Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do 2m+2n= 2m+n
=> 2m+n- 2m- 2n= 0 (đổi vế)
=> 2m(2n-1) - 2n+1= 1 (cộng 2 vế cho 1, phân phối 2m+n vs 2m)
=>'2m(2n-1) -(2n-1)=1 ( qui tắc đóng ngoặc )
=> (2n-1)(2m-1) =1 [phân phối 2m(2n-1) vs (2n-1)]
=> 2n-1=1 và 2m-1=1
=> n=1 và m=1
Vậy m+n= 2
Thắc mắc gì cứ hỏi, nếu sai ai đó chữa lại nhé
_ Hết_
Ta có : 2m + 2n = 2m+n = 2m . 2n
=> 2m - 2m . 2n + 2n = 0
=> 2m - 2m . 2n + 2n - 1 = -1
=> (2m - 1)(2n - 1) = 1
Do m,n là số tự nhiên nên 2m - 1 và 2n - 1 là ước dương của 1
hay đồng thời xảy ra 2m - 1 = 1 và 2n - 1 = 1 => m = n = 1
Vậy m = 1 và n = 1
Nhận xét:
+) Với x \(\geq\) 0 thì | x | + x = 2x
+) Với x < 0 thì | x | + x = 0
Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z
Áp dụng nhận xét trên thì :
| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z
\(\implies\) 2m + 2015 là số chẵn
\(\implies\) 2m là số lẻ
\(\implies\) m = 0
Khi đó:
| n - 2016 | + n - 2016 = 2016
+) Nếu n < 2016 ta được:
- ( n - 2016 ) + n - 2016 =2016
\(\implies\) 0 = 2016
\(\implies\) vô lí
\(\implies\) loại
+) Nếu n \(\geq\) 2016 ta được :
( n - 2016 ) + n - 2016 = 2016
\(\implies\) n - 2016 + n - 2016 = 2016
\(\implies\) 2n - 2 . 2016 = 2016
\(\implies\) 2 ( n - 2016 ) = 2016
\(\implies\) n - 2016 = 2016 : 2
\(\implies\) n - 2016 = 1008
\(\implies\) n = 1008 + 2016
\(\implies\) n = 3024
\(\implies\) thỏa mãn
Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }
Ta có : \(2^m+2^n=2^{m+n}\)
\(\Leftrightarrow\frac{2^m+2^n}{2^{m+n}}=1\)
\(\Leftrightarrow\frac{1}{2^n}+\frac{1}{2^m}=1\)
+) Xét \(m=0\Rightarrow\frac{1}{2^0}+\frac{1}{2^n}>1\) ( loại )
+) Xét \(m=1\Rightarrow\frac{1}{2^m}=\frac{1}{2}\Rightarrow n=1\) ( thỏa mãn)
+) Xét \(m>1\Rightarrow\frac{1}{2^m}< \frac{1}{2},\frac{1}{2^n}< \frac{1}{2}\Rightarrow\frac{1}{2^m}+\frac{1}{2^n}< 1\) ( Do n là số tự nhiên, loại )
Vậy : \(m=1,n=1\) thỏa mãn đề.
\(2^m+2^n=2^{m+n}\)\(\Leftrightarrow2^{m+n}-\left(2^m+2^n\right)=0\)
\(\Leftrightarrow2^{m+n}-2^m-2^n=0\)\(\Leftrightarrow\left(2^{m+n}-2^m\right)-2^n+1=1\)
\(\Leftrightarrow2^m\left(2^n-1\right)-\left(2^n-1\right)=1\)\(\Leftrightarrow\left(2^m-1\right)\left(2^n-1\right)=1\)
Vì m , n là số tự nhiên \(\Rightarrow2^m-1\)và \(2^n-1\)cũng là số tự nhiên
\(\Rightarrow\hept{\begin{cases}2^m-1=1\\2^n-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}2^m=2\\2^n=2\end{cases}}\Leftrightarrow m=n=1\)
Vậy \(m=n=1\)