Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là A. Khi đó A + 2 là số chia hết cho 5; 6 và 7.
Vậy số nhỏ nhất chia hết cho 5; 6; 7 là: 5 x 6 x 7 = 210
Số cần tìm là: 210 - 2 = 208
ĐS: 208
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
Gọi số tự nhiên cần tìm là a
Theo đề ta có:
a chia cho 3 dư 1
chia cho 4 dư 2
chia 5 dư 3
chia 6 dư 4
=> a+2 thuộc BC(3;4;5;6)={60; 120;180; 240; 300; 360; 420...}
=> a={58;118;178; 238; 288;358;418.... }
Mà đề còn cho a chia hết cho 11
=> a= 38
gọi so phải tìm là X
Theo đề bài ta co X+2 chia hết cho 3,4,5,6
suy ra X+2 là bội chung của 3,4,5,6
VCNN{3;4;5;6}=60 nên X+2=60.N
Do đó X=60.N-2{N=1;2;3;4...}
mặt khác X chia hết cho 11 lần lượt cho n = 1;2;3...
Ta thấy N=7 thì x=418 chia hết cho 11
vậy số nhỏ nhất phả tìm là 418
gọi số tự nhiên đó là a
theo đề ra, ta có:
a chia 3 dư 1=>(a-1) chia hết cho3=>(a+2) chia hết cho 3
a chia 4 dư 2=>(a-2) chia hết cho4=>(a+2) chia hết cho 4
a chia 5 dư 3=>(a-3) chia hết cho5=>(a+2) chia hết cho 5
a chia 6 dư 4=>(a-4) chia hết cho6=>(a+2) chia hết cho 6
=>(a+2) thuộc BC(3;4;5;6)
BCNN(3;4;5;6)=60
BC(3;4;5;6)=B(60)={0;60;120;180;240;300;360;420;...}
=>(a+2)={0;60;120;180;240;300;360;420;...}
=>a={-2;58;118;178;238;298;358;418;...}
vì a là số tự nhiên nhỏ nhất và a chia hết cho 11
=>a chỉ có thể là 418
NHỚ CHO MÌNH 1 ĐÚNG NHA
Nhận xét:
3 - 1 = 2
4 - 2 = 2
5 - 3 = 2
6 - 4 = 2
Gọi số cần tìm là a
thì a + 2 chia hết cho cả 3,4,5,6
Ta có 3 = 3 x 1
4 = 2 x 2
3 = 5 x 1
6 = 3 x 2
3 x 2 x 2 x 5 = 60
a + 2 là bội của 60
a = (60 - 2 ) + k x 60
a= 58 + k x 60
a chia hết cho 11 mà 58: 11 = 5 (dư 3); 11 - 3 = 8
Vậy (k x 60) : 11 ( dư 8)
Dùng phép thử chọn để tìm k ta được k = 6
Vậy a = 58 + 6 x 60 = 418
Gọi số cần tìm là X
Khi đó x+7 chia hết 11,13,7 và x+7 có chữ số tận cúng là 2 vì x có số tận cùng là 5
=> x+7 \(\in\)BCNN(13;11;7)
=> BCNN(13;11;7)=1001
Vì có chữ số tận cúng là 2
=> x+7 =2002
=> x=2002-7
=> x=1995