K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

Gọi số tự nhiên đó là a 

ta có : a-2 chia hết cho 3;4;5;6

           a-2 thuộc BC (3;4;5;6)

            BC(3;4;5;6) = (60;120;...)

            a = (62;122;...)

  => a nhỏ nhất mà chia cho 7 dư 3 nên a =122

17 tháng 3 2018

gọi STN đó là a. Ta có:

a-2 chia hết cho 3;4;5;6

a-2 thuộc BC(3,4,5,6)

BCNN(3,4,5,6)=60

a={62;122;...}

vì a nhỏ nhất , a chia 7 dư 3 nên a=122

27 tháng 3 2018

Gọi số tự nhiên đấy là b .

Ta có : a-2 sẽ chia hết cho 3,4,5,6 

nên ta tìm bội chung của chúng ok

      rồi nói với cô giáo cô làm nốt họ em

7 tháng 3 2020

              Giải

Gọi số cần tìm là x.

x chia 3 dư 2 => x - 2 ⋮ 3

x chia 4 dư 2 => x - 2 ⋮ 4

x chia 5 dư 2 => x - 2 ⋮ 5

x chia 6 dư 2 => x - 2 ⋮ 6

⇒x - 2  ∈ BCNN(3;4;5;6)

Ta có : 3 = 3                  4 = 22         5 = 5           6 = 2.3

⇒BCNN(3;4;5;6) = 22 .3.5 = 60

mà B(60) = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; 420 ; 480 ; ... }

⇒BC(3;4;5;6) = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; 420 ; 480 ; ... }

Nếu x - 2 = 0 => ( loại )

Nếu x - 2 = 60 => x = 60 - 2 = 58 ( loại )

Nếu x - 2 = 120 => x = 120 + 2 = 122 ( nhận )

Vì x phải nhỏ nhất nên x = 122

Vậy số tự nhiên nhỏ nhất cần tìm đó là: 122

2 tháng 3 2020

Bài 2: 

Gọi số đó là n

Theo bài ra ta có:

\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)

\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)

\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)

\(\Rightarrow n+27⋮11;4;9\)

Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)

\(\Rightarrow n=836-27=809\)

Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\) 

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

Gọi số tự nhiên thỏa mãn đề là $n$. Vì số đó chia $3,4,5,6$ đều dư $2$ nên số đó sẽ có dạng

$n=BCNN(3,4,5,6).k+2$ với $k$ tự nhiên 

$n=60k+2$

$n$ chia $7$ dư $3$ nghĩa là $n-3\vdots 7$

$\Leftrightarrow 60k-1\vdots 7$

$\Leftrightarrow 63k-(60k-1)\vdots 7$

$\Leftrightarrow 3k+1\vdots 7$

$\Leftrightarrow 3k-6\vdots 7$

$\Leftrightarrow k-2\vdots 7$ nên $k=7t+2$ với $t$ tự nhiên.

Thay vô $n$ thì $n=60k+2=60(7t+2)+2=420t+122$

Vì $t\geq 0$ nên $n\geq 122$

Vậy số tự nhiên nhỏ nhất thỏa đề là $122$

28 tháng 2 2015

nhầm, bằng 192 đấy

 

28 tháng 2 2015

gọi số đó là a

vì a chia 3,4,5,6 đều dư 12

=>(a-12) chia hết 3,4,5,6

=>(a-12) thuộc BC(3,4,5,6)

3=3 ; 4=2^2 ; 5=5 ; 6=2*3

BCNN(3,4,5,6) = 2^2*3*5 =60

BC(3,4,5,6)=B(60)= {0;60;120;180;...}

vì a nhỏ nhất và chia 7 dư 3 =>(a-12) -3 chia hết cho 7 và là nhỏ nhất

từ tập hợp trên => (a-12)=180 =>a=192

thế đó, nói thật nó chẳng khó gì nhưng mình có làm sai thì nhắc nhé ^-^

20 tháng 11 2017

Ta gọi A là số cần tìm

A : 2,3,4,5 và 6 dư 1

Suy ra A+1 chia hết cho 2,3,4,5 và 6

Suy ra A+1 thuộc BC(2,3,4,5,6)

2=2

3=3

4=22

6=2x3

Suy ra BCNN(2,3,4,5,60=22 x3=12

Vậy BC(2,3,4,5,6)=B(2,3,4,5,6)=12

Suy ra A+1 thuộc 1,12,24,36

Ta có bảng sau:

                            A+1                                       1                                                             12                                                               24                                                                36                       
                               A                                         0            11             23

            35                      


VÌ A chia hết cho 7 nên A sẽ bằng 35
 

20 tháng 11 2017

                                                                       Giải

Gọi số tự nhiên đó là :a

Vì số đó chia cho 2,cho3,cho4,cho5,cho6 đều dư 1 suy ra a-1 = BC<2,3,4,5,6> mà a nhỏ nhất suy ra a=BCNN<2,3,4,5,6>

Ta có: 2=2

          3=3

           2=2.2

          5=5

          6=2.3

suy ra BCNN<2,3,4,5,6>=2.2.3.5=60

suy ra a-1= BC<2,3,4,5,6>=B<60>=(0,60,120,180,240,300,...)

suy ra a=(1,61,121,181,241,301,...)

Mặt khác a chia hết  cho 7suy ra=241

Vậy số tự nhiên nhỏ nhất cần tìm là:241

8 tháng 5 2016
gọi số cần tìm là a.theo bài ra ta có:
a chia 3;4;5;6 dư 1
=>a-1 chia hết cho 3;4;5;6
=>a-1 chia hết cho 60
=>a-1 thuộc {0;60;120;180;240;300;...}
=>a thuộc {1;61;121;181;241;301;...}
vì a chia hết cho 7=>a=301
vậy a=301
 
2 tháng 8 2017

1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:  

\(BCNN\left(4;5;6\right)=60.\)

\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)

\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)

\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)

Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301 

2 tháng 8 2017

Số cần tìm là 301