Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
Gọi số cần tìm là a. Ta có
a + 6 chia hết cho 11 suy ra ( a+6) +77 chia hết cho 11 (1)
a+ 5 chia hết chỏ suy ra ( a+5) +78 chia hết cho 13 suy ra a+ 83 chia hết cho 13 (2)
a +83 chia hết cho 143
Từ (1) và (2) => a = 143k -83 ( k \(\in\) N* )
để được a nhỏ nhất có 3 chữ số ta chọn k = 2, được a = 203
Vậy số cần tìm là 203.
a) Đặt n là số nhỏ nhất chia 5 dư 1, chia 7 dư 5
Ta có: n chia 5 dư 1 => n+9 chia hết cho 5 (1)
n chia 7 dư 5 => n+9 chia hết cho 7 (2)
Từ (1)(2) và n nhỏ nhất => n+9 \(\in\) BCNN(5;7)=35
n+9=35 => n=26
b) Đặt e là số tự nhiên nhỏ nhất chia 21 dư 2, chia 12 dư 5
Ta có : e chia 21 dư 2 => e+19 chia hết cho 21 (1)
e chia 12 dư 5 => e+19 chia hết cho 12 (2)
Từ (1)(2) và e nhỏ nhất => e+19 \(\in\) BCNN(21;12)=84
e+19=84 => e=65
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
a) x chia 8;12;16 dư 2
=>x-2 chia hết cho 8;12;16
mà 8=2^3
12=2^2x3
16=2^4
=> BCNN(8;12;16)=2^4x3=48
=>x-2 thuộc B(48)=[48;96;144;....]
x=[50;98;146;....]
mà x nhỏ nhất có 2 chữ số =>a=50
b) ta có a chia 12 dư 11
a chia 15 dư 14
=> a+1 chia hết cho 12 và 15
=> a+1 thuộc BC(12;15)
mà 12=2^2x3
15=3x5
=>BCNN(12;15)=2^2X3X5=60
=> a+1 thuộc B(60)=[60;120;180;.....]
a=[59;119;179;....]
mà a nhỏ nhất =>a=59
c) x chia 50;38;25 dư 12
=> x-12 chia hết cho 50;38;25
mà 50=2x5^2
38=2x19
25=5^2
=>BCNN(50;38;25)=2x5^2x19=950
=>a-12 thuộc B(950)=[950;1900;2850;....]
a=[962;1912;2862;....]
mà a bé nhất =>a=962
nhớ tick cho mình đấy
b) Theo đề bài, A : 12,15 (dư lần lượt là 11 và 14)
Vậy (A+1) chia hết cho 12,15
BCNN của 12,15 là:
\(\hept{\begin{cases}12=2^2\times3\\15=3\times5\end{cases}}\Rightarrow BCNN=2^2\times3\times5=60\)
Vậy a=60-1=59
Học tốt nha ^-^
Gọi số đó là a. Ta có:
a chia cho 21 dư 2 => a + 19 chia hết cho 21
a chia cho 12 dư 5 => a + 19 chia hết cho 12
BCNN(21,12) = 22.3.7 = 84
=> a + 19 chia hết cho 84
=> a + 19 = 84p (p thuộc N*)
=> a = 84p - 19
=> a = 84p - 84 + 84 - 19
=> a = 84.(p - 1) + 65
=> a chia cho 84 dư 65
Vậy...