Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(1+2+3+....+n=\overline{aaa}\)
\(\Rightarrow\left(n+1\right).n\div2=\overline{aaa}\)
\(\Rightarrow\left(n+1\right).n\div2=111.a\)
\(\Rightarrow\left(n+1\right).n=111.a.2\)
\(\Rightarrow\left(n+1\right).n=37.6a\)
Vì 37 là số nguyên tố \(\Rightarrow n+1⋮37\) hoặc \(n⋮37\)
Mà \(\overline{aaa}\le999\Rightarrow n< 50\)
\(\Rightarrow n+1=37\)hoặc \(n=37\)
Nếu \(n=37\Rightarrow6a=38\) (loại)
Nếu \(n+1=37\Rightarrow n=36\Rightarrow a=36\)
Thử lại: \(\left(36.37\right)\div2=666\) (thỏa mãn)
Vậy \(n=36;a=6\)
ta có:
1+2+3+...+n=aaa
=> n.(n-1)/2=aaa.111
=>n.(n-1)=aaa.222=a.3.2.37
=>n.(n+1)=aaa.6.37
vì n(n+1) là số tự nhiên liên tiếp =>a.6 và 37 là hai số tự nhiên liên tiếp ; a.6 chia hết cho 6
=>a.6=36<=>a=6=>n=36
vậy...(tự kl nhé)
gọi số cần tìm là a
a chia 3 dư 1 => a+2 chia hết cho 3 => a+2 thuộc B(3)
a chia 4 dư 2 => a+2 chia hết cho 4 => a+2 thuộc B(4)
a chia 5 dư 3 => a+2 chia hết cho 5 => a+2 thuộc B(5)
a chia 6 dư 1 => a+2 chia hết cho 3 => a+2 thuộc B(6)
=> a+2 thuộc BC(3;4;5;6)
3=3;4=22;5=5;6=2.3
BCNN(3;4;5;6)=22.3.5=60
BC(3;4;5;6)=B(60)={0;60;120;180;...;420;...}
=> a+2={0;60;120;180;...;420;...}
a={58;118;...;418;...}
mà a nhỏ nhất và a chia hết cho 11 nên a=418
A có :
(98 - 2) : 2 + 1 = 49 (phần tử)
B có :
(70 - 6) : 4 + 1 = 17 (phần tử)
1.
Số phần tử của tập hợp A là :
( 98 - 2 ) : 2 + 1 = 49 ( phần tử )
Số phần tử của tập hợp B là :
( 70 - 6 ) : 4 + 1 = 17 ( phần tử )
2.
Ta thấy :
2 + 3 = 5
5 + 3 = 8
8 + 3 = 11
11 + 3 = 14
..............
Quy luật : Hai số liên tiếp hơn kém nhau 3 đơn vị.
Gọi số hạng thứ 100 là x
Ta có :
( x - 2 ) : 3 + 1 = 100
=> ( x - 2 ) : 3 = 99
=> x - 2 = 297
=> x = 299
vậy số hạng thứ 100 là 299
Tổng 100 số hạng đầu là :
( 299 + 2 ) x 100 : 2 = 15050
3.
a. A = { 0; 1 ; 2 ; 3 ; 4; .................. }
A = { x thuộc N }
b. B = { 1; 2 ; 3; 4 ; 5 ; ......................}
B = { x thuộc N* }
Kí hiệu thuộc không gõ được
4. Gọi số phải tìm là ab.
Theo đầu bài ta có :
a0b = 6ab
=> a x 100 + b = 6 x ( 10a + b )
=> a x 100 + b = 60 a + 6 b
=> 40 a = 5b
=> 8a = b
=> Số đó là 18
Thử lại : 108 = 18 x 6 ( đúng )
Vậy số cần tìm là 18
1+2+3+...+n=aaa
=>\(\frac{n.\left(n+1\right)}{2}=a.111\)
=>n.(n+1)=a.3.37.2
=>n.(n+1)=(a.6).37
=>n=a.6, n+1=37=>n=36=a.6=>a=6
hoặc n=37, n+1=a.6=>a+1=38=a.6=>a=38/6(vô lí)
Vậy n=36, a=6
ta có:
1+2+3+...+n=aaa
=> n.(n-1)/2=aaa.111
=>n.(n-1)=aaa.222=a.3.2.37
=>n.(n+1)=aaa.6.37
vì n(n+1) là số tự nhiên liên tiếp =>a.6 và 37 là hai số tự nhiên liên tiếp ; a.6 chia hết cho 6
=>a.6=36<=>a=6=>n=36
vậy...(tự kl nhé)
1 + 2 + 3 +...+ \(x\) = \(\overline{aaa}\)
Đặt 1 + 2 + 3 +...+ \(x\) = B
xét dãy số
1; 2; 3; ...; \(x\)
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Dãy số trên có số số hạng là: (\(x\) - 1): 1 + 1 = \(x\)
Tổng B = ( \(x\) + 1) \(\times\) \(x\) : 2 = \(\overline{aaa}\)
(\(x\) + 1) \(\times\) \(x\) = \(\overline{aaa}\) \(\times\) 2
(\(x\) + 1) \(\times\) \(x\) = 2 \(\times\) 111 \(\times\) a
(\(x\) + 1) \(\times\) \(x\) = 2 \(\times\) 3 \(\times\) 37 \(\times\) a
(\(x\) + 1)\(\times\) \(x\) = 37\(\times\)6\(\times\)a = 74\(\times\)3\(\times\)a = 111 \(\times\) 2 \(\times\) a
⇒ 6 \(\times\) a = 36; 38; 3 \(\times\) a = 73; 75; 2 \(\times\) a = 110; 112
Lập bảng ta có:
6 \(\times\) a | 36 | 38 |
a | 6 | \(\dfrac{19}{3}\)(loại) |
3 \(\times\) a | 73 | 75 |
a | \(\dfrac{73}{3}\) (loại) | \(\dfrac{75}{3}\) (loại) |
2 \(\times\) a | 110 | 112 |
a | 55 (loại) | 56 (loại) |
Vậy a = 6 ⇒ (\(x\) + 1) \(\times\) \(x\) = 37 \(\times\) 36 ⇒ \(x\) = 36
Đáp số \(x\) = 36; a = 6
Ta thấy rằng \(1+2+3+...+x=\dfrac{x\left(x+1\right)}{2}\) nên điều kiện đề bài tương đương với \(\dfrac{x\left(x+1\right)}{2}=\overline{aaa}=100a+10a+a\) \(=111a\)
\(\Leftrightarrow x\left(x+1\right)=222a\). Ta thấy \(x\ge11\) vì nếu không \(x^2+x\le110< 111\). Tương tự thì \(x\le31\) vì nếu không \(x^2+x\ge1056>999\). Từ đó suy ra \(11\le x\le31\). Mặt khác, \(x\left(x+1\right)=222a\) nghĩa là \(x\left(x+1\right)⋮222\). Nhưng do \(x\) và \(x+1\) nguyên tố cùng nhau nên \(x⋮222\) hoặc \(x+1⋮222\). Nhưng với \(11\le x\le31\) thì rõ ràng điều này không thể thỏa mãn.
Vậy, không tồn tại số tự nhiên \(x\) nào thỏa mãn yêu cầu bài toán.