Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 3n ⋮ 2n - 5
=> 2(3n) - 3(2n - 5) ⋮ 2n - 5
=> 6n - 6n + 15 ⋮ 2n - 5
=> 15 ⋮ 2n - 5
=> 2n-5 ϵ Ư(15)
Ư(15) = {1;-1;3;-3;5;-5;15;-15}
=> n={3;2;4 ;1;5;0;10;-5
ta có : 2n-1 chia hết cho 2n-1
2(2n-1) chia hết cho 2n-1
4n-2 chia hết cho 2n-1
áp dụng tính chất : a chia hết cho c
b chia hết cho c
thì a-b chia hết cho c
4n-2-(4n-5) chia hết cho 2n-1
3 chia hết cho 2n-1
2n-1 thuộc ( 1;-1;3;-3)
2n thuộc ( 2;0;4;-2)
n thuộc ( 1;0;2;-1)
2n + 108 chia hết cho 2n + 3
2n + 3 + 105 chia hết cho 2n + 3
105 chia hết cho 2n + 3
2n + 3 thuộc U(105) = {1;3;5;7;15;21;35;105}
Bạn liệt kê ra
a) \(\left(n+6\right)⋮\left(n+1\right)\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;4\right\}\)
b) \(\left(4n+9\right)⋮\left(2n+1\right)\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)
\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;3\right\}\)
a)\(\begin{cases} 2n+1⋮n\\ n⋮n=>2n⋮n \end{cases}\)=> (2n+1)-2n⋮n
<=> 1⋮n
=> n∈Ư(1) => n={1;-1}
b)\(\begin{cases} n+3⋮n+1\\ n+1⋮n+1 \end{cases}\)=> (n+3)-(n+1)⋮ n+1
<=> 2⋮ n+1
=> n+1∈Ư(2)
=> n+1={2;-2;1;-1}
=> n={1;-3;0;-2}
ta có 2n+12= 2(n + 6)
suy ra để 2n+12 chia hết cho n+3 thì
2(n + 6) chia hết cho n+3
nên n + 6 chia hết n +3
rồi làm tiếp nhé :)
Ta có \(n+3⋮n+3\) với mọi số tự nhiên \(n\)
nên \(2\left(n+3\right)=2n+6⋮n+3\)
Mà \(2n+12=2n+6+6\)
Do đó để \(2n+12⋮n+3\) thì \(6⋮n+3\)
nên \(n+3\) thuộc \(U'\left(6\right)=\text{1; 2; 3; 6}\)
Giải từng trường hợp ta được: \(n=0;3\)