Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Lời giải:
Đặt $n^2-n+13=t^2$ với $t$ là số tự nhiên
$\Rightarrow 4n^2-4n+52=4t^2$
$\Leftrightarrow (4n^2-4n+1)+51=4t^2$
$\Leftrightarrow (2n-1)^2+51=(2t)^2$
$\Leftrightarrow 51=(2t)^2-(2n-1)^2=(2t-2n+1)(2t+2n-1)$
Đến đây là dạng phương trình tích cơ bản rồi. Bạn lập bảng xét giá trị để tìm ra $n$ thôi.
Lời giải:
Đặt $n+31=a^2$ với $a$ tự nhiên. Khi đó: $2n+5=2(a^2-31)+5=2a^2-57$
Như vậy, ta cần tìm $a$ sao cho $2a^2-57$ là số chính phương.
Ta có 1 tính chất quen thuộc: Số chính phương lẻ chia 8 dư $1$ (bạn có thể xét 1 scp $x^2$ và xét các TH $x=4k+...$ để cm)
$\Rightarrow 2a^2-57\equiv 1\pmod 8$
$\Rightarrow 2a^2\equiv 58\pmod 8$
$\Rightarrow a^2\equiv 29\equiv 5\pmod 8$
(điều này vô lý do scp chia 8 dư 0,1 hoặc 4)
Vậy không tồn tại số tự nhiên $a$, tức là không tồn tại số $n$ cần tìm.
Đặt \(N=3^n+19\)
Nếu n lẻ \(\Rightarrow n=2k+1\Rightarrow n=3.9^k+19\equiv\left(3-1\right)\left(mod4\right)\equiv2\left(mod4\right)\)
Mà các số chính phương chia 4 chỉ có thể dư 0 hoặc 1
\(\Rightarrow\)N không phải SCP
\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)
\(\Rightarrow\left(3^k\right)^2+19=m^2\)
\(\Leftrightarrow\left(m-3^k\right)\left(m+3^k\right)=19\)
Pt ước số cơ bản, bạn tự hoàn thành nhé
Ta có:
n^2+2002=m^2 (m là stn)
m^2 - n^2 = 2002
(m-n).(m+n)=2002
Nếu m, n cùng tính chẵn lẻ thì m-n và m+n cùng chẵn nên m-n và m+n đều chia hết cho 2
=> (m-n).(m+n) chia hết cho 4
Mà 2002 không chia hết cho 4 => Loại
Nếu m, n ko cùng tính chẵn lẻ thì m-n và m+n đều lẻ => (m-n).(m+n) là số lẻ
Mà 2002 là chẵn => Loại
Vậy ko tồn tại n thỏa mãn đề bài
**** CHO MIH NHÉ
Đặt n^2 + 2002 = a^2
=> 2002 = a^2 - n^2
=> 2002 = ( a - n )(a + n )
Vì n2 + 81 là số chính phương, ta đặt n2 + 81 = k2 (k thuộc N*)
<=> 81 = k2 - n2
<=> (k - n)(k + n) = 81 = 1.81 = 3.27 = 9.9
TH1: (k - n)(k + n) = 1.81
=> k - n = 1 và k + n = 81
=> (k - n) - (k + n) = 1 - 81
=> -2n = -80 => n = 40
TH2: (k - n)(k + n) = 3.27
=> k - n = 3 ; k + n = 27
=> -2n = -24 => n = 12
TH2: (k - n)(k + n) = 9.9
=> k - n = 9 ; k + n = 9
=> -2n = 0 => n = 0
Vậy n = {40;12;0}