K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

a)3^2+2^2=5^2 => n=2

b) 3^2+2^2=5^2 => n=2

nó là duy nhất

c/m duy nhất: giờ thi trác nhiệm thôi khỏi cần chưng minh

2 tháng 1 2017

sai rồi

27 tháng 5 2022

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:

\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)

Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)

\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)

Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)

Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\)  => (a - 1).(a - 9) = 0

=> a = 9. Từ đó ta có n = 40

Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40

15 tháng 8 2019

hay giup minh voi

a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.

\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)

\(\Rightarrow a^2-n^2=2002\)

\(\Rightarrow a^2+an-an-n^2=2002\)

\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)

\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)

Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)

\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)

Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)

mà 2002 không chia hết cho 4

\(\Rightarrow\)Mâu thuẫn

\(\Rightarrow\)Điều giả sử là sai

\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài

4 tháng 11 2015

trong câu hỏi tương tự nhiều lắm bạn 

17 tháng 11 2018

Gọi số cần tìm là a 
Suy ra (a+2) chia hết cho cả 3,4,5,6 
Vậy (a+2) là Bội chung của 3,4,5,6 
=>(a+2)=60k (với k thuôc N) 
vì a chia hết 11 nên 
60k chia 11 dư 2 
<=>55k+5k chia 11 dư 2 
<=>5k chia 11 dư 2 
<=>k chia 11 dư 7 
=>k=11d+7 (với d thuộc N) 
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)

2 tháng 11 2019

Vì n2 + 2n + 12 là số chính phương nên đặt n2 + 2n + 12 = k2 (k thuộc N)

Suy ra (n2 + 2n + 1) + 11 = k2

Suy ra k2 – (n+1)2 = 11

Suy ra (k+n+1)(k-n-1) = 11

Nhận xét thấy k+n+1 > k-n-1 và chúng là những số nguyên dương, nên ta có thể viết : (k+n+1)(k-n-1) = 11.1

+ Với k+n+1 = 11 thì k = 6

Thay vào ta có : k – n - 1 = 1

6 - n - 1 =1 Suy ra n = 4

2 tháng 11 2019

Đặt \(n^2+2n+18=a^2\left(a\inℕ;n\inℕ\right)\)

\(\Leftrightarrow a^2-\left(n+1\right)^2=17\)

\(\Leftrightarrow\left(a+n+1\right)\left(a-n-1\right)=17\)

Vì \(a\inℕ;n\inℕ\) nên  \(\left(a+n+1\right)>\left(a-n-1\right)\); 17 là số nguyên tố

\(\Rightarrow a+n+1=17\)(*)

và a - n - 1 = 1 hay a = n + 2 

Thay a = n +2 vào (*)  tính được n = 7