Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n + 2 chia hết cho n - 1
=> n - 1 + 3 chia hết cho n - 1
Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1
Mà n thuộc N => n - 1 > hoặc = -1
=> n - 1 thuộc {-1 ; 1 ; 3}
=> n thuộc {0 ; 2 ; 4}
Những câu còn lại lm tương tự
Giải:
a) \(n+2⋮n-1\)
\(\Rightarrow\left(n-1\right)+3⋮n-1\)
\(\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=-1\Rightarrow n=0\)
+) \(n-1=3\Rightarrow n=4\)
+) \(n-1=-3\Rightarrow n=-2\)
Vậy \(n\in\left\{2;0;4;-2\right\}\)
b) \(2n+7⋮n+1\)
\(\Rightarrow\left(2n+2\right)+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=3\Rightarrow n=2\)
+) \(n+1=-3\Rightarrow n=-4\)
Vậy \(n\in\left\{0;-2;2;-4\right\}\)
Vì 3 n chia hết cho (5-2n)
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={1,3,5,15,-1,-3-5-15}
Mặt khác 5-2n nhỏ hơn hoặc bằng 5
5-2n thuộc {-15,-5,-3,-1,1,3,5}
=>N thuộc { 10,5,4,3,2,1,0}
Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5 - 2n
=> 5-2n thuộc U (15)€{1,3,5,15,-1,-3,-5,-15}
Mặt khác 5 trừ 2 n nhỏ hơn hoặc bằng 5
=>5-2n€{-15,-5,-3,-1,1,3,5}
=>N€{10,5,4,3,2,1,0}
\(a,\left(n+3\right)⋮\left(n+1\right)\)
\(n+3⋮n+1\)
\(n+1+2⋮n+1\)
Vì \(n+1⋮n+1\)
\(2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)\left\{\pm1;\pm2\right\}\)
Ta lập bảng xét giá trị
n+1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
a) Ta có : n+3\(⋮\)n+1
\(\Rightarrow\)n+1+2\(⋮\)n+1
Vì n+1\(⋮\)n+1 nên 2\(⋮\)n+1
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
...
b) Ta có : 2n+6\(⋮\)2n-6
\(\Rightarrow\)2n-6+12\(⋮\)2n-6
Vì 2n-6\(⋮\)2n-6 nên 12\(⋮\)2n-6
\(\Rightarrow2n-6\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
...
c) Ta có : 2n+3\(⋮\)n-2
\(\Rightarrow\)2n-4+7\(⋮\)n-2
\(\Rightarrow\)2(n-2)+7\(⋮\)n-2
Vì 2(n-2)\(⋮\)n-2 nên 7\(⋮\)n-2
\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
...
d) Tương tự phần c.
a) Có: n + 11 chia hết cho n - 1
=> n - 1 + 12 chia hết cho n - 1
=> 12 chia hết cho n - 1
=> n - 1 thuộc Ư(11) = {-11 ; -1 ; 1 ; 11}
=> n thuộc {-10 ; 0 ; 2 ; 12}
Mà n thuộc N nên n thuộc {0 ; 2 ; 12}
Vậy n thuộc {0 ; 2 ; 12}.
b) Có: 7n chia hết cho n - 3
=> 7n - 21 + 21 chia hết cho n - 3
=> 7 (n - 3) + 21 chia hết cho n - 3
=> 21 chia hết cho n - 3
=> n - 3 thuộc Ư(21) = {-21 ; -7 ; -3 ; -1 ; 1 ; 3 ; 7 ; 21}
=> n thuộc {-18 ; -4 ; 0 ; 2 ; 4 ; 6 ; 10 ; 24}
Mà n là số tự nhiên nên n thuộc {0 ; 2 ; 4 ; 6 ; 10 ; 24}
Vậy ...
c) Có: n2 + 2n + 6 chia hết cho n + 4
=> n2 + 4n - 2n + 8 - 2 chia hết cho n + 4
=> n (n + 4) - 2 (n + 4) - 2 chia hết cho n + 4
=> 2 chia hết cho n + 4
=> n + 4 thuộc Ư(2) = {-2 ; -1 ; 1 ; 2}
=> n thuộc {-6 ; -5 ; -3 ; -2}
Mà n là STN nên n thuộc rỗng
Vậy ...
d) Có: n2 + n + 1 chia hết cho n + 1
=> n (n + 1) + 1 chia hết cho n + 1
=> 1 chia hết cho n + 1
=> n + 1 thuộc Ư(1) = {-1 ; 1}
=> n thuộc {-2 ; 0}
Vậy ...