K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2018

\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}\ge2014\)

\(\Rightarrow\frac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+...+\frac{\sqrt{n}-\sqrt{n+1}}{\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}\)

\(=\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{n}-\sqrt{n+1}}{n-\left(n+1\right)}\)

\(=\frac{1-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{n}-\sqrt{n+1}}{-1}\)

\(=\frac{1-\sqrt{n+1}}{-1}=\sqrt{n+1}-1\ge2014\)

                                  \(\Leftrightarrow\sqrt{n+1}\ge2015\)

                                 \(\Leftrightarrow n+1=2015^2=4060225\)

\(V~~n=4060224\)

12 tháng 12 2017

\(\hept{\begin{cases}\frac{2}{2\sqrt{n}}< \frac{2}{\sqrt{n-1}+\sqrt{n}}=2\left(\sqrt{n}-\sqrt{n-1}\right)\\\frac{2}{2\sqrt{n}}>\frac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\end{cases}}\)

Từ đây ta có:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}< 2\left(\sqrt{1}-\sqrt{0}+\sqrt{2}-\sqrt{1}+...+\sqrt{n}-\sqrt{n-1}\right)\)

\(=2\left(\sqrt{n}-0\right)=2\sqrt{n}\)

Tương tự ta có:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n+1}-\sqrt{n}\right)\)

\(=2\left(\sqrt{n+1}-1\right)>\sqrt{n}\)

12 tháng 12 2017

Gọi \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}=A\)là A

Có \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{3}}>...>\frac{1}{\sqrt{n}}\)

=> \(A>n.\frac{1}{\sqrt{n}}=\sqrt{n}\)(1)

Ta có: \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=2\left(\sqrt{n}+\sqrt{n-1}\right)\)

=> \(\frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

Khi đó: \(\frac{1}{\sqrt{1}}< 2\left(\sqrt{1}-\sqrt{0}\right)\)

\(\frac{1}{\sqrt{2}}< 2\left(\sqrt{2}-\sqrt{1}\right)\)

...

\(\frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

=> \(A< 2\left(\sqrt{n}-\sqrt{n-1}+...+\sqrt{1}\right)\)

=> \(A< 2\sqrt{n}\)(2)

Từ (1) và (2) => \(\sqrt{n}< A< 2\sqrt{n}\)

1 tháng 10 2016

Với n = 2 thì \(\frac{1}{1}+\frac{1}{\sqrt{2}}>\sqrt{2}\)

Giả sử bất đẳng thức đúng đến n = k

=> \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{K}}>\sqrt{K}\)

Ta chứng minh bất đẳng thức đúng với n = k+1

Ta có \(\frac{1}{\sqrt{1}}+...+\frac{1}{\sqrt{K}}+\frac{1}{\sqrt{K+1}}>\sqrt{K}+\frac{1}{\sqrt{K+1}}\)

\(\frac{1+\sqrt{K^2+K}}{\sqrt{K+1}}\)

Mà ta lại có

\(\frac{1+\sqrt{K^2+K}}{\sqrt{K+1}}-\sqrt{K+1}\)

\(\frac{\sqrt{K^2+K}-K}{\sqrt{K+1}}>0\)

Vậy bất đẳng thức đúng với n = k + 1

=> Điều phải chứng minh

1 tháng 10 2016

Ta có \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{n}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{n}};\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{n}};...\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}}.n=\sqrt{n}\)

1 tháng 10 2016
lớn hơn bao nhiêu thế
1 tháng 4 2020

\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}}\) \(=\sqrt{\frac{n^2\left(n+1\right)^2+2n^2+2n+1}{n^2\left(n+1\right)^2}}=\sqrt{\frac{\left[n\left(n+1\right)\right]^2+2n\left(n+1\right)+1}{n^2\left(n+1\right)^2}}\)

\(=\sqrt{\frac{\left[n\left(n+1\right)+1\right]^2}{\left[n\left(n+1\right)\right]^2}}=\frac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\frac{1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)

Do đó: \(Q=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{n}-\frac{1}{n+1}+\frac{101}{n+1}\)

\(=n+1-\frac{1}{n+1}+\frac{101}{n+1}=n+1+\frac{100}{n+1}\ge2\sqrt{\left(n+1\right)\cdot\frac{100}{n+1}}=20\)

Dấu "=" \(\Leftrightarrow n+1=\frac{100}{n+1}\Leftrightarrow n=9\)

15 tháng 4 2020

dòng thứ 2 từ dưới đếm lên : chỗ này là sao vậy ạ? nếu là ruts gọc thì 1+1-1/2+1+1/2-1/3 đi đâu rồi ạ?