
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Ta co n^2-1 chia het cho 2;5. =>n^2-1 co chu so tan cung la 0. =>n^2 co tan cung la 1. =>n co tan cung la 1. Xét n=1(loai). Xét n=11=>n^2=121(thoa man) Vay n=11

Vì : \(n^2-1⋮2,5\Rightarrow n^2-1\) sẽ có tận cùng bằng 0
\(\Rightarrow n^2-1=...0\Rightarrow n^2=...1\)
Vì : \(n^2\) là số chính phương và n là số tự nhiên nhỏ nhất \(\ne0\)
Mà : \(n^2\) có tận cùng = 1
\(\Rightarrow n^2\in\left\{81;121;...\right\}\)
\(\Rightarrow n^2=81\Rightarrow n^2=9^2\Rightarrow n=9\)
Vậy : \(n=9\) thì \(n^2-1⋮2,5\)

Bài 5:
a: \(x^2\ge0\forall x\)
=>\(x^2+2021\ge2021\forall x\)
Dấu '=' xảy ra khi x=0
b: \(22x^{22}\ge0\forall x;20x^{20}\ge0\forall x\)
Do đó: \(22x^{22}+20x^{20}\ge0\forall x\)
=>\(-22x^{22}-20x^{20}\le0\forall x\)
=>\(B=-22x^{22}-20x^{20}+2022\le2022\forall x\)
Dấu '=' xảy ra khi x=0
Bài 3:
a: 2x-1 là bội của x-3
=>2x-1⋮x-3
=>2x-6+5⋮x-3
=>5⋮x-3
=>x-3∈{1;-1;5;-5}
=>x∈{4;2;8;-2}
b: 2x+1 là ước của 3x+2
=>3x+2⋮2x+1
=>6x+4⋮2x+1
=>6x+3+1⋮2x+1
=>1⋮2x+1
=>2x+1∈{1;-1}
=>2x∈{0;-2}
=>x∈{0;-1}
Bài 1:
n;n+1;n+2;n+3 là bốn số nguyên liên tiếp
=>n(n+1)(n+2)(n+3)⋮4!=24
=>n(n+1)(n+2)(n+3)⋮3 và n(n+1)(n+2)(n+3)⋮8

n2 = 12 = 1
1 - 1 = 0
0 chia hết cho cả 2 và 5
vậy n=0
nếu đúng cậu tk cho mình nha !
n\(^2\)- 1 = ab ( với b = 0 , a khác 0 )
Ta có : ab + 1 = n\(^2\)
Hay 0 + 1 = đuôi của n\(^2\)-> Vô lí vì không có 2 số giống nhau nhân vào bằng 11 , 21 , 31 , . . .( vì 11 , 21 , 31 , . . - 1 sẽ có đuôi là 0 )
Vậy , không có giá trị của n

\(n^2-1\) chia hết cho 2 và 5
=> n2-1 chia hết cho 10
=> n2 có tận cùng bằng 1
=> n2=81
=> n=9