K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

giải theo ptt l8 í 

5 tháng 4 2016

ai mà cha2ngf pt là giải theo pt l8

nhưng mk cần lời giải cụ thể

9 tháng 8 2019

Em tham khảo!

Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath

Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath 

Ta có : n^3 - n^2 + n - 1 = n^2(n - 1) + (n - 1) = (n^2 + 1)(n - 1).
Để n^3 - n^2 + n - 1 là số nguyên tố thì ta có 2 TH :
TH1 : n^2 + 1 = 1 ; n - 1 nguyên tố => không có n thỏa mãn.
TH2 : n^2 + 1 nguyên tố, n - 1 = 1 => n = 2 (chọn)
Vậy n = 2 để n^3 - n^2 + n - 1 nguyên tố

3 tháng 1 2017

Xem lại cái đề thử đúng chưa nhé

3 tháng 1 2017

\(U\left(n\right)=n^3-n^2-7n+1\)

U(0)=1;U(2)==-9;U(3)=-1;U(4)=21

Đặt n=(p+4) {xét luôn dương đỡ loạn)

\(U\left(p\right)=p^3+11p^2+40p+21\) (*)Với P thuộc N => U(P) luôn dương 

\(U\left(p\right)=p^3+2p^2+p+\left(9p^2+39p+21\right)\)(**)

\(U\left(p\right)=p\left(p+1\right)^2+\left(9p^2+39p+21\right)\)(***)

với p=3 U(3)=27+11.9+40.3+21=89 nguyên tố (nhận)

với p> 3 p=3k hiển nhiên (**) U(p) không nguyên tố

với p=3k+2=> (p+1)=3k+3 chia hết cho 3=> U(p) không nguyên tố

với p=3k+1=>p(p+1)^2 chia 3 dư 1

xét tiếp:

với k =2t+1 hiển nhiên p chẵn => (***) H(p) chia hết cho 2 loại

=> P có dạng 6k+1: với k=1=>P=7 \(\frac{U\left(7\right)}{7}=169=13^2\)Loại

"thôi quá dài -xét tiếp có lẽ => U(p) hợp số nhưng mỏi lắm:

Tạm chấp nhận p=3; n=7  (c/m hoàn chỉnh hoặc tìm ra con nào lớn hơn 89 dành cho @Ailibaba)

16 tháng 6 2018

\(C=n^3-n^2+n-1=n^2\left(n-1\right)+\left(n-1\right)=\left(n-1\right)\left(n^2+1\right)\)

Ta có C là số nguyên tố nên C có ước là 1

TH1: n-1=1  => n=2 => C=5 (là số nguyên tố)

TH2: n2+1= 1 => n=0  => C= -1 (không là số nguyên tố)

Vậy với n=2 thì C là số nguyên tố

16 tháng 6 2018

Có C = \(\left(n-1\right)\left(n^2+1\right)\)

Do C nguyên tố nên hoặc (n-1)=1 hoặc (n2+1)=1

TH1: n-1=1=>n=2 => C = 5 ( chọn )

TH2: n^2+1=1 => n=0 => C = -1 (loại)

Vậy n=2