Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi d=ƯCLN(6n+5;2n+1)
=>6n+5-3(2n+1) chia hết cho d
=>2 chia hết cho d
mà 2n+1 lẻ
nên d=1
=>ĐPCM
b: Gọi d=ƯCLN(14n+3;21n+4)
=>42n+9-42n-8 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
d: Gọi d=ƯCLN(3n+7;n+2)
=>3n+7 chia hết cho d và n+2 chia hết cho d
=>3n+7-3n-6 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
a: \(d=UCLN\left(n+1;n+2\right)\)
\(\Leftrightarrow n+2-n-1⋮d\)
hay d=1
b: \(d=UCLN\left(2n+2;2n+3\right)\)
\(\Leftrightarrow2n+3-2n-2⋮d\)
hay d=1
Tìm các số nguyên x sao cho các phân số sau có giá trị là một số nguyên:
a)n+4/1
b)n-2/4
c)6/n-1
d)n/n-2
a) Phân số \(\dfrac{n+4}{1}\) là số nguyên với mọi x nguyên
b) \(\dfrac{n-2}{4}\) là một số nguyên khi:
\(n-2\) ⋮ 4
⇒ n - 2 ∈ B(4)
⇒ n ∈ B(4) + 2
c) \(\dfrac{6}{n-1}\) là một số nguyên khi:
6 ⋮ n - 1
\(\Rightarrow n-1\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;4;-2;7;-5\right\}\)
d) \(\dfrac{n}{n-2}=\dfrac{n-2+2}{n-2}=1+\dfrac{2}{n-2}\)
Để bt nguyên thì \(\dfrac{2}{n-2}\) phải nguyên:
\(\Rightarrow\text{2}\) ⋮ n - 2
\(\Rightarrow n-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow n\in\left\{3;1;4;0\right\}\)
a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2\right\}\)
Ta có : 3n + 7 chia hết cho n - 2
=> 3n - 6 + 13 chia hết cho n - 2
=> 3(n-2) +13 chia hết cho n - 2
Vì 3(n-2) chia hết cho n-2
=> 13 chia hết cho n-2
=> n-2 ϵ Ư(13)
=> n - 2 ϵ { 1 ; 13 }
=> n ϵ { 3 ; 15}
Vậy n ϵ { 3 ; 15}
a) ta có : n+ 4 \(⋮\) n +1
=> n + 1 + 3 \(⋮\) n + 1
Vì n+ 1 \(⋮\) n+1
=> 3 \(⋮\) n+1
=> n+1 ϵ Ư(3)
=> n + 1 ϵ {1 ; 3 }
=> n ϵ {0 ; 2 }
Vậy n ϵ {0 ; 2 }