Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{5n+185+2n+1+n+7}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\)
n là số tự nhiên thì (4n+3)>3
Để M là 1 số tự nhiên thì 187 phải chia hết cho (4n+3) hay (4n+3) là ước nguyên dương lơn hơn 3 của 187 là: 11;17;187.
- Nếu 4n+3=11 => n=2
- Nếu 4n+3=17 => n=7/2 - Loại vì không thuộc N
- Nếu 4n+3 = 187 => n=46
Vậy, với n = 2 hoặc n = 46 thì M là số tự nhiên.
\(Tacó\)
\(4n-3⋮n+1\Rightarrow4\left(n+1\right)⋮n+1\Rightarrow4n+4⋮n+1\)
\(\Rightarrow4n+4-\left(4n-3\right)⋮n+1\Rightarrow7⋮n+1\Rightarrow n+1\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{-2;0;6;-8\right\}\)
b, \(K=\frac{2}{3+4n}\)
\(\Rightarrow GTLN\left(K\right)\Leftrightarrow n=0\Rightarrow\frac{2}{3+4n}=\frac{2}{3}\Rightarrow GTLN\left(K\right)=\frac{2}{3}\)
Để A nguyên
=>n+7 chia hết cho n+2
Mà n+2 chia hết cho n+2
=>n+7-n+2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2E{-1;-5;1;5}
=>nE{-3;-7;-1;3}
Thử lại nx là đc
n+7/n+2 là số nguyên khi n+7chia hết cho n+2
ta có: n+7chia hết cho n+2
suy ra (n+2)+5 chia hết cho n+2
suy ra 5 chia hết cho n+2
N+2 thuộc ước của 5
còn sau đó bạn biết làm gì rồi đó
(7n-8)/(2n-3) = (7n - 21/2 + 5/2)/(2n - 3) = [(7/2)(2n-3) + 5/2]/(2n-3) = 7/2 + 5/(4n-6)
Phân số đã cho có GTLN khi 5/(4n-6) có GTLN, tức là khi 4n-6 có giá trị dương nhỏ nhất (với n là stn) hay n = 2
Trả lời : n = 2 (khi đó phân số có GTLN là 7/2 + 5/2 = 6)
Đặt \(A=\frac{7n-8}{2n-3}\)
\(\Rightarrow2A=\frac{14n-16}{2n-3}\)
\(\Rightarrow2A=\frac{7.\left(2n-3\right)+5}{2n-3}\)
\(\Rightarrow2A=7+\frac{5}{2n-3}\)
ĐỂ \(A_{Max}\Rightarrow2.A_{Max}\Rightarrow\left(\frac{5}{2n-3}\right)_{Max}\)
=>\(2n-3\)là số nguyên dương nhỏ nhỏ nhất co thể
\(\Rightarrow2n-3=1\Rightarrow n=2\)