Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
a, gọi ước chung lơn nhất của .... là d
4n+3 chia hết cho d
2n+ 3 chia hết cho d
=> 2(2n+3) chia hết cho d
=> 4n+5 chia hết cho d
=> (4n+5)-(4n+3) chia hết cho d
=> 2 chia hết cho d
=> d= 1,2
mà 2n+3 là số lẻ ( ko chia hết cho 2)
=> d= 1
vây ......
a) Gọi ƯCLN (n + 2; n + 3) = d.
Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d
Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.
tạm làm phần a cho còn lại đang nghĩ
- nếu n = 0 => 9n + 4 = 0 + 4 = 4 (loại)
- nếu n = 1 => 12n + 5 = 12 + 5 = 17 (chọn)
=> 9n + 4 = 9 + 4 = 13 (chọn)
- nếu n = 2 => 9n + 4 = 18 + 4 = 22 (loại)
- nếu n >2 => n ( thuộc ) { 2k ; 2k + 1 }
+ nếu n = 2k => 9n + 4 = 9.2k + 4 = 18k + 4 = 2 . ( 9k + 2 ) ( loại )
+ nếu n = 2k + 1 => .......
nên n = 1
1. Xét n chẵn, hai số đều chẵn => ko nguyên tố cùng nhau
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau
9n+24 = 3(3n+8)
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a)
=> k cũng là ước số của (3n+8)-(3n+4) = 4 => k chẵn (b)
Từ (a) và (b) => Mâu thuẫn
Vậy với n lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau
Đặt \(9n+24;3n+4=d\left(d\inℕ^∗\right)\)
\(9n+24⋮d\)
\(3n+4⋮d\Rightarrow9n+12⋮d\)
Suy ra : \(9n+24-9n-12⋮d\Rightarrow12⋮d\)( ktm )