K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2021

so 2 phai ko

24 tháng 5 2022

sai bét

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

16 tháng 8 2015

gọi d là ước chung lớn nhất của 2n + 3 và 4n + 1

ta có : 2n + 3 : hết cho d , 4n + 1 : hết cho d

=> 2( 2n + 3) : hết cho d , 4n + 1 : hết cho d

=> ( 4n + 6) - ( 4n + 1) : hết cho d

=> 5 : hết cho d

=> d \(\varepsilon\){ 5}

mà 4n + 1 ko : hết cho 5

=> 4n : hết cho 5

=> n : hết cho 5

=> n \(\varepsilon\)5k

15 tháng 12 2017

gọi d là ước chung lớn nhất của 2n + 3 và 4n + 1
ta có : 2n + 3 : hết cho d , 4n + 1 : hết cho d
=> 2( 2n + 3) : hết cho d , 4n + 1 : hết cho d
=> ( 4n + 6) - ( 4n + 1) : hết cho d
=> 5 : hết cho d
=> d ε{ 5}
mà 4n + 1 ko : hết cho 5
=> 4n : hết cho 5
=> n : hết cho 5
=> n ε 5k

chúc bn hok tốt @+_@

Xét p = 2 => p + 10 = 12 không là số nguyên tố
Xét p = 3 => p + 10 = 13 là số nguyên tố, p + 20 = 23 là số nguyên tố.
=> Chôn p = 3.
Xét p > 3 mà p là số nguyên tố => p có dạng p = 3k + 1 hoặc p = 3k + 2
+ Nếu p = 3k + 1 => p + 20 = 3k + 21 = 3(k +7) chia hết cho 3
Mà p > 3 => p + 20 không là số nguyên tố (vô lý)
+ Nếu p = 3k + 2 => p + 10 = 3k + 12 = 3(k + 4) chia hết cho 3
Mà p >3 => p + 10 không là số nguyên tố (vô lý)
Vậy p =3

b) Có 4n+5 chia hết cho 2n+1

=>2(n+1)+3 chia hết cho 2n+1

=>2n+1 thuộc Ư(3)={1;3}

Với 2n+1=1    =>n=0

Với 2n+1=3      =>n=1

Vì đề bài là tìm số tự nhiên n nên 3 chỉ có 2 ước thôi nha

16 tháng 3 2020

a, p là số nguyên tố

+ xét p = 2 => p + 10 = 2 + 10 = 12 là hợp số 

=> p = 2 (loại)

+ xét p= 3 => p + 10 = 3 + 13 = 13 thuộc P

                      p + 20 = 3 + 20 = 23 thuộc P

=> p = 3 (nhận)

+ p là số nguyên tố và p > 3

=> p = 3k + 1 hoặc  p = 3k + 2

xét p = 3k + 1 => p + 20 = 3k + 1 + 20 = 3k + 21 = 3(k + 7) là hợp số

=> p = 3k + 1 loaị

+ xét p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 = 3(k + 4) là hợp số

=> p = 3k + 2 loại

vậy p  = 3

b, 4n + 5 chia hết cho 2n + 1

=> 4n + 2 + 3 chia hết cho 2n + 1

=> 2(2n + 1) + 3 chia hết cho 2n + 1

=> 3 chia hết cho  2n + 1

xét ư(3) là ok nhé

21 tháng 8 2021

xét n = 2 => 4n + 1 = 2.4 + 1 = 9 (không là số nguyên tố)

=> n = 2 (loại)

xét n = 3 => 2n + 1 = 2.3 + 1 = 7 (thỏa mãn)

                    4n + 1 = 3.4 + 1 = 13 (thỏa mãn)

=> n = 3 (chọn)

xét n là số nguyên tố, n > 3 => n = 3k + 1 hoặc n = 3k + 2

với n = 3k + 1 => 2n + 1 = 2(3k + 1) + 1 = 6k + 2 = 2(k + 1) (là hợp số)

=> n = 3k + 1 (loại)

với n = 3k + 2 => 4n + 1 = 4(3k + 2) + 2 = 12k + 10 = 2(6k + 5) (là hợp số)

=> n = 3k + 2 (loại)

vậy n = 3

                    

\(\text{Ta gọi ước chung lớn nhất của 2n + 8 và n + 1 là d . (d thuộc N*)}\)

\(\hept{\begin{cases}2n+8\text{chia hết cho d}\\n+1\text{chia hết cho d}\end{cases}< =>\hept{\begin{cases}2n+8\text{chia hết cho d}\\2\left(n+1\right)\text{chia hết cho d}\end{cases}< =>}\hept{\begin{cases}2n+8\text{chia hết cho d}\\2n+2\text{chia hết cho d}\end{cases}}}\)

\(=>\left(2n+8\right)-\left(2n+2\right)\text{chia hết cho d}\)

\(=>6\text{chia hết cho d}\)

\(=>\text{ d thuộc ước của 6}\)

              \(\text{Để A là số nguyên tố thì d khác 6 }\)

\(=>n\text{khác}6k+1\)\(\text{(k khác N*)}\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:
Từ đề bài, kết hợp với $2n+1> n-1$ ta có các TH sau đây:

TH1: 

$2n+1=3; n-1=p$

$\Rightarrow n=1; n-1=p\Rightarrow p=0$ (vô lý)

TH2: $2n+1=p, n-1=3\Rightarrow p=9$ (loại)

TH3: $2n+1=3p; n-1=1$

$\Rightarrow 3p=5$ (loại)

Vậy không tồn tại $n,p$ thỏa đề.