K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

28 tháng 2 2021

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

28 tháng 2 2021

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

18 tháng 10 2015

10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201

2n+1 là số chính phương lẻ nên

2n+1∈ {25;49;81;121;169}

↔ n ∈{12;24;40;60;84}

↔ 3n+1∈{37;73;121;181;253}

↔ n=40

18 tháng 10 2015

10 ≤ ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201


2n+1 là số chính phương lẻ nên

2n+1∈ {25;49;81;121;169}

↔ ∈{12;24;40;60;84}

↔ 3n+1∈{37;73;121;181;253}

↔ n=40

27 tháng 7 2023

THeo đề bài ta có

\(n+18=p^2\)

\(n-41=q^2\)

\(\Rightarrow p>q\)

\(\Rightarrow n+18-\left(n-41\right)=59=p^2-q^2\)

\(\Rightarrow\left(p-q\right)\left(p+q\right)=59=1.59\)

TH1

\(\Rightarrow\left\{{}\begin{matrix}p-q=1\\p+q=59\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}p=30\\q=29\end{matrix}\right.\)

Thay p=30 vào \(n+18=p^2\)

\(\Rightarrow n+18=900\Rightarrow n=900-18=882\)

TH2

\(\left\{{}\begin{matrix}p-q=59\\p+q=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}p=30\\q=-29\end{matrix}\right.\)

Giống TH1 có n=882

 

22 tháng 4 2019

\(\hept{\begin{cases}n+18=a^2\\n-41=b^2\end{cases}}\)

=> \(a^2-b^2=59=1.59=59.1=\left(a-b\right)\left(a+b\right)\)

Tự Tính

n+18 và n-41 là số cp=>n>41 
đặt n+18=k²=>n=k²-18----(1) 
n-41=t²=>n=t²+41-----(2) 
từ (1)và(2) => k²-18=t²+41 
⇔k²-t²=41+18=59 
⇔(k-t)(k+t)=59=1.59=(-1).(-59) 
TH1 :.....k-t=1 
.............k+t=59 
=>k=30 , t=29 
Thử lại n+18=30²=>n=882 
............n-41=882-41=841=29² (t/m~) 
............n-41=29²=>n=872 
...........n+18=872+18=900=30² (t/m~) 
TH2 :k-t=-1 
........k+t=-59 
=>k=-30 
....t=-29 
Thử lại n+18=(-30)²=>n=882 
...........n-41=(-29)²=>n=872 
Vậy số tự nhiên n là 872 hoặc 882

16 tháng 3 2018

n+18 và n-41 là số cp=>n>41 
đặt n+18=k²=>n=k²-18----(1) 
n-41=t²=>n=t²+41-----(2) 
từ (1)và(2) => k²-18=t²+41  ⇔k²-t²=41+18=59  ⇔(k-t)(k+t)=59=1.59=(-1).(-59) 
TH1 :.....k-t=1 
.............k+t=59 
=>k=30 , t=29 
Thử lại n+18=30²=>n=882 
............n-41=882-41=841=29² (t/m~) 
............n-41=29²=>n=872 
...........n+18=872+18=900=30² (t/m~) 
TH2 :k-t=-1 
........k+t=-59 
=>k=-30 
....t=-29 
Thử lại n+18=(-30)²=>n=882 
...........n-41=(-29)²=>n=872 
Vậy số tự nhiên n là 872 hoặc 882

:3

NM
7 tháng 2 2021

ta có 

\(\hept{\begin{cases}n-7=a^2\\n+16=b^2\end{cases}\Rightarrow b^2-a^2=23\Leftrightarrow\left(b+a\right)\left(b-a\right)=23}\)

 dễ thấy n phải lớn hơn 7 và b>a nên ta có \(\hept{\begin{cases}a+b=23\\b-a=1\end{cases}\Rightarrow\hept{\begin{cases}a=11\\b=12\end{cases}\Rightarrow}n=128}\)