Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........
10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên
2n+1∈ {25;49;81;121;169}
↔ n ∈{12;24;40;60;84}
↔ 3n+1∈{37;73;121;181;253}
↔ n=40
10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên
2n+1∈ {25;49;81;121;169}
↔ n ∈{12;24;40;60;84}
↔ 3n+1∈{37;73;121;181;253}
↔ n=40
THeo đề bài ta có
\(n+18=p^2\)
\(n-41=q^2\)
\(\Rightarrow p>q\)
\(\Rightarrow n+18-\left(n-41\right)=59=p^2-q^2\)
\(\Rightarrow\left(p-q\right)\left(p+q\right)=59=1.59\)
TH1
\(\Rightarrow\left\{{}\begin{matrix}p-q=1\\p+q=59\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}p=30\\q=29\end{matrix}\right.\)
Thay p=30 vào \(n+18=p^2\)
\(\Rightarrow n+18=900\Rightarrow n=900-18=882\)
TH2
\(\left\{{}\begin{matrix}p-q=59\\p+q=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}p=30\\q=-29\end{matrix}\right.\)
Giống TH1 có n=882
có
\(\hept{\begin{cases}n+18=a^2\\n-41=b^2\end{cases}}\)
=> \(a^2-b^2=59=1.59=59.1=\left(a-b\right)\left(a+b\right)\)
Tự Tính
n+18 và n-41 là số cp=>n>41
đặt n+18=k²=>n=k²-18----(1)
n-41=t²=>n=t²+41-----(2)
từ (1)và(2) => k²-18=t²+41
⇔k²-t²=41+18=59
⇔(k-t)(k+t)=59=1.59=(-1).(-59)
TH1 :.....k-t=1
.............k+t=59
=>k=30 , t=29
Thử lại n+18=30²=>n=882
............n-41=882-41=841=29² (t/m~)
............n-41=29²=>n=872
...........n+18=872+18=900=30² (t/m~)
TH2 :k-t=-1
........k+t=-59
=>k=-30
....t=-29
Thử lại n+18=(-30)²=>n=882
...........n-41=(-29)²=>n=872
Vậy số tự nhiên n là 872 hoặc 882
n+18 và n-41 là số cp=>n>41
đặt n+18=k²=>n=k²-18----(1)
n-41=t²=>n=t²+41-----(2)
từ (1)và(2) => k²-18=t²+41 ⇔k²-t²=41+18=59 ⇔(k-t)(k+t)=59=1.59=(-1).(-59)
TH1 :.....k-t=1
.............k+t=59
=>k=30 , t=29
Thử lại n+18=30²=>n=882
............n-41=882-41=841=29² (t/m~)
............n-41=29²=>n=872
...........n+18=872+18=900=30² (t/m~)
TH2 :k-t=-1
........k+t=-59
=>k=-30
....t=-29
Thử lại n+18=(-30)²=>n=882
...........n-41=(-29)²=>n=872
Vậy số tự nhiên n là 872 hoặc 882
:3
ta có
\(\hept{\begin{cases}n-7=a^2\\n+16=b^2\end{cases}\Rightarrow b^2-a^2=23\Leftrightarrow\left(b+a\right)\left(b-a\right)=23}\)
dễ thấy n phải lớn hơn 7 và b>a nên ta có \(\hept{\begin{cases}a+b=23\\b-a=1\end{cases}\Rightarrow\hept{\begin{cases}a=11\\b=12\end{cases}\Rightarrow}n=128}\)