Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(5n+19⋮n+3\)
\(\Rightarrow5n+15+4⋮n+3\)
\(\Rightarrow5\left(n+3\right)+4⋮n+3\)
Vì \(5\left(n+3\right)⋮n+3\Rightarrow4⋮n+3\Rightarrow n+3\inƯ\left(4\right)\Rightarrow n+3\in\left\{1;2;4\right\}\Rightarrow n\in\left\{-2;-1;1\right\}\)
Mà n là só tự nhiên => n = 1
Vậy n = 1
a,
Ta có n \(⋮\)n => 4 \(⋮\)n
=> n \(\in\)Ư ( 4 ) = { 1 ; - 1 ; 2 ; - 2 ; 4 ; - 4 }
Vì n là số tự nhiên => n \(\in\){ 1 ; 2 ; 4 }
b,
Ta có 3n \(⋮\)n => 7 \(⋮\)n
=> n \(\in\)Ư ( 7 ) = { 1 ; 7 }
c,
5n \(⋮\)n => 27 \(⋮\)n
=> n \(\in\)Ư ( 27 ) = { 1 ; 3 ; 9 ; 27 }
a) \((n+4) \vdots 2 \Rightarrow n \vdots n;4 \vdots n \Rightarrow n \epsilon B(4) \Rightarrow n={1;2;4}\)
b)\((3n+7) \vdots n \Rightarrow 7 \vdots n \Rightarrow n=1;7\)
c)\((27-5n) \vdots n \Rightarrow 27 \vdots n ;5n \leq 27 \Rightarrow n=1;3.\)
Chúc bn học tốt (^^)
\(n^2+3=n\left(n+2\right)-2\left(n+2\right)+7\)
Để n2 +3 chia hết cho n+2 => 7 chia hết cho n+2
=> n+2 là Ư(7) ={1;7}
vì n+2 >/2
=> n+2 = 7 => n =5
Vậy n =5
n2 + 3n - 13 chia hết cho n + 3
=> n(n + 3) - 13 chia hết cho 13
=> 13 chia hết cho n + 3 (Vì n(n + 3) chia hết cho n + 3)
=> n + 3 thuộc {1; -1; 13; -13}
=> n thuộc {-2; -4; 10; -16}
a. n + 4 \(⋮\) n
\(\Rightarrow\left\{{}\begin{matrix}n⋮n\\4⋮n\end{matrix}\right.\)
4 \(⋮\) n
\(\Rightarrow\) n \(\in\) Ư (4) = {1; 2; 4}
\(\Rightarrow\) n \(\in\) {1; 2; 4}
b. 3n + 11 \(⋮\) n + 2
3n + 6 + 5 \(⋮\) n + 2
3(n + 2) + 5 \(⋮\) n + 2
\(\Rightarrow\left\{{}\begin{matrix}3\left(n+2\right)\text{}⋮n+2\\5⋮n+2\end{matrix}\right.\)
\(\Rightarrow\) 5 \(⋮\) n + 2
\(\Rightarrow\) n + 2 \(\in\) Ư (5) = {1; 5}
n + 2 | 1 | 5 |
n | vô lí | 3 |
\(\Rightarrow\) n = 3
\(\frac{3n-5}{n+1}=\frac{3\left(n+1\right)-8}{n+1}\)
Để 3n - 5 chia hết cho n + 1 thì 8 phải chia hết cho n +1 hay n + 1 phải là ước của 8 mà n là số tự nhiên nên n>=0 => n+1>=1
=> n + 1 = {1; 2; 4; 8} => n={0; 3; 5; 9}
a) Ta có : 4n + 3 = 2(2n - 1) +5
Do 2n - 1 \(⋮\)2n - 1 nên 2(2n - 1) \(⋮\)2n - 1
Để 4n + 3 \(⋮\)2n - 1 thì 5 \(⋮\)2n - 1 => 2n - 1 \(\in\)Ư(5) = {1; 5}
Lập bảng :
2n - 1 | 1 | 5 |
n | 1 | 3 |
Vậy n = {5; 3} thì 4n + 3 chia hết cho 2n - 1
c) Ta có : n + 3 = (n - 1) + 4
Để (n - 1) + 4 \(⋮\)n - 1 thì 4 \(⋮\)n - 1 => n - 1 \(\in\)Ư(4) = {1; 2; 4}
Lập bảng :
n - 1 | 1 | 2 | 4 |
n | 2 | 3 | 5 |
Vậy n = {2; 3; 5} thì n + 3 \(⋮\)n - 1
3n+1 chia hết 11-n
<=> 3n+1+(11-n).3 chia hết 11-n (11-n chia hết cho 11-n)
<=>12 chia hết 11-n
=> 11-n thuộc tập hợp Ư(12) = {1; 2; 3; 4; 6 ; 12}
Mà 11-n <12 =)) 11-n thuộc tập hợp {1; 2; 3; 4; 6}
Vậy n thuộc tập hợp {5; 7; 8; 9; 10}
Mình đánh máy nên ko dùng kí hiệu đc, mong bạn thông cảm giúp mình
\(3n+12⋮n+3\)
\(\Rightarrow3n+9+3⋮n+3\)
\(\Rightarrow3\left(n+3\right)+3⋮n+3\)
\(3\left(n+3\right)⋮n+3\)
\(\Rightarrow3⋮n+3\)
\(\Rightarrow n+3\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n\in\left\{-4;-2;-6;0\right\}\)
vậy__