Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\left(\frac{1}{2}\right)^n=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^n=\frac{1^5}{2^5}\)
\(\left(\frac{1}{2}\right)^n=\left(\frac{1}{2}\right)^5\)
Vậy \(n=5\)
2. \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)
\(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
Vậy \(n=3\)
3. \(\frac{16}{2^n}=2\)
\(2^n=\frac{16}{2}\)
\(2^n=8=2^3\)
Vậy \(n=3\)
1. (1/2)2 = 1/32 <=> (21)n = (25)n <=> 1.n = 5.1 <=> n = 5
=> n = 5
2) 343/125 = (7/5)n <=> (7/5)3 = (7/5)n <=> 3 = n
=> n = 3
3) 16/2n = 2 <=> 16.2n <=> 2n = 2/16 <=> 2n = 1/8 <=> 2n = 8 <=> 2n = 23 <=> n = 3
=> n = 3
Bài 2:\(A=\frac{n+1}{n-2009}=\frac{n-2009+2010}{n-2009}=\frac{n-2009}{n-2009}+\frac{2010}{n-2009}=1+\frac{2010}{n-2009}\)
Để A có giá trị lớn nhất \(1+\frac{2010}{n-2009}\)cũng có giá trị lớn nhất =>\(\frac{2010}{n-2009}\)cũng có giá trị lớn nhất => \(n-2009\inƯ\left(2010\right)\)
và \(n-2009\in N\left(n\in Z\right)\)và bé nhất (để\(\frac{2010}{n-2009}\)lớn nhất)
=>n - 2009 = 1 =>n = 2010
Thay n = 2010 vào \(1+\frac{2010}{n-2009}\)ta được: \(1+\frac{2010}{2010-2009}=1+2010=2011\)
Vậy giá trị lớn nhất của A là 2011 khi n=2010
Bài 1:\(A=\frac{5-2n}{n+3}=\frac{9-4+2n}{n+3}=\frac{9}{n+3}-\frac{4+2n}{n+3}=\frac{9}{n+3}-2\)
Để \(A\in N\)thì\(\frac{9}{n+3}-2\in N\Rightarrow\frac{9}{n+3}\in N\Rightarrow n+3\inƯ\left(9\right)\)
Ta có bảng sau:
n + 3 | 9 | -9 | 3 | -3 | 1 | -1 |
n | 6 | -12 | 0 | -6 | -2 | -4 |
a. \(\left(\frac{-1}{5}\right)^n=\frac{-1}{125}\)
<=> \(\left(\frac{-1}{5}\right)^n=\left(\frac{-1}{5}\right)^3\)
<=> n = 3
b. \(\left(\frac{-2}{11}\right)^m=\frac{4}{121}\)
<=> \(\left(\frac{-2}{11}\right)^m=\left(\frac{2}{11}\right)^2\)
<=> m = 2
c. 72n + 72n+2 = 2450
<=> 72n + 72n . 72 = 2450
<=> 72n.(1+72) = 2450
<=> 72n = 72
<=> 2n = 2
<=> n = 1
Tìm số tự nhiên n, biết:
a) \(\frac{16}{2^n}=2\)
b) \(\frac{\left(-3\right)^n}{81}=-27\)
c) \(8^n:2^2\)
a) \(\frac{16}{2^n}=2\)
=> 16 = 2 . 2n
=> 16 = 2n+1
=> 24 = 2n+1
=> n + 1 = 4
=> n = 4 - 1
=> n = 3
Vậy n = 3
b) \(\frac{\left(-3\right)^n}{81}=-27\)
=> (-3)n = -27 . 81
=> (-3)n = (-3)3 . (-3)4
=> (-3)n = (-3)7
=> n = 7
Vậy n = 7
c) 8n : 22 = bao nhiêu vậy ban?
Chuk bn hk tốt!
a)\(\frac{16}{2^n}=2\)
\(\Rightarrow16:2=2^n\)
2n=8=23
Vậy n=3
b)\(\frac{\left(-3\right)^n}{81}=-27\)
\(\Rightarrow\)(-3)n=-27.81
(-3)n=-2187=(-3)7
Vậy n=7
c)Mk ko hiểu bn ghi gì
\(a,\frac{16}{2^n}=2\Rightarrow2^n=16:2\Rightarrow2^n=8\Rightarrow2^n=2^3\Rightarrow n=3\)
\(b,\frac{\left(-3\right)^n}{81}=-27\Rightarrow\left(-3\right)^n=81.\left(-27\right)\Rightarrow\left(-3\right)^n=-2187\Rightarrow3^n=3^7\Rightarrow n=7\)
\(c,8^n:2^n=4\Rightarrow4^n=4\Rightarrow n=1\)
\(a,\frac{16}{2^n}=2\) \(b,\frac{\left(-3\right)^n}{81}=-27\) \(c,8^n:2^n=4\)
\(\Rightarrow2^4=2^n.2\) \(\Rightarrow\left(-3\right)^n=\left(-27\right).81\) \(\Rightarrow\left(8:2\right)^n=4\)
\(\Rightarrow4=n+1\) \(\Rightarrow\left(-3\right)^n=\left(-3\right)^7\) \(\Rightarrow4^n=4\)
\(\Rightarrow n=4-1=3\) \(\Rightarrow n=7\) \(\Rightarrow n=1\)
1/
\(\left(\frac{y}{3}-5\right)^{2000}=\left(\frac{y}{3}-5\right)^{2008}\)
=> y/ 3 - 5 = 0 hoặc y/3 - 5 = 1
=> y/3 = 5 hoặc y/3 = 6
=> y = 15 hoặc y = 18
2/
d) \(\left(n^{54}\right)^2=n\)
=> n = 0 hoặc n=1
2n-1:2=256
2n-1=512=29=>n-1=9=>n=10
5n+5n-2=650
5n-2(25+1)=650=>5n-2=25=52
=>n-2=2=>n=4
\(2^n+2^{n-2}=\frac{5}{2}\)
\(\Leftrightarrow2^n\left(1+2^{-2}\right)=\frac{5}{2}\)
\(\Leftrightarrow2^n\left(1+\frac{1}{4}\right)=\frac{5}{2}\)
\(\Leftrightarrow2^n\cdot\frac{5}{4}=\frac{5}{2}\)
\(\Rightarrow2^n=\frac{5}{2}:\frac{5}{4}=2\)
\(\Rightarrow n=1\)
Ta có: \(2^n+2^{n-2}=\frac{5}{2}\Rightarrow2^n\left(1+\frac{1}{4}\right)=\frac{5}{2}.\)
\(\Rightarrow2^n\cdot\frac{5}{4}=\frac{5}{2}\Rightarrow2^n=\frac{5}{2}:\frac{5}{4}=2\Rightarrow n=1\)