Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{n}{n+1}=\frac{1}{4}.\)
\(\Leftrightarrow\frac{1}{n+1}=\frac{1}{4}\Leftrightarrow n+1=4\Leftrightarrow n=3\)
\(\Leftrightarrow5^n\cdot5-5^n\cdot\dfrac{1}{5}=5^{12}\cdot24\)
\(\Leftrightarrow5^n\cdot\dfrac{24}{5}=5^{12}\cdot24\)
\(\Leftrightarrow5^n=5^{13}\)
hay n=13
Đặt
S=1 +2+..+n
S=n+(n-1)+..+2+1
=> 2S = n(n+1)
=> S=\(\dfrac{n\left(n+1\right)}{2}\)
=> aaa = \(\dfrac{n\left(n+1\right)}{2}\)
=> 2aaa =n(n+1)
Mặt khác aaa =a . 111= a . 3 . 37
=> n(n+1) =6a . 37
Vế trái là tích 2 số tự nhiên liên tiếp
=> a . 6 =36
=> a=6
(nêu a . 6 =38 loại)
Vậy n=36, aaa=666
1/3 + 1/6 + 1/10 + ... + 2/n(n+1) = 2003/2004
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n.\left(n+1\right)}=\frac{2003}{4008}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2003}{4008}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)
\(\Rightarrow\frac{1}{n+1}=\frac{1}{2}-\frac{2003}{4008}\)
\(\Rightarrow\frac{1}{n+1}=\frac{1}{4008}\)
\(\Rightarrow n+1=4008\)
\(\Rightarrow n=4008-1=4007\)
mathx