Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a+b=5 <=> ( a+b)2=52
<=> a2+ab+b2=25
Hay : a2+1+b2=25
<=> a2+b2=24
Bài 4 : Gọi 2 số tự nhiên lẻ liên tiếp lần lượt là : a, a+2 ( a lẻ , a thuộc N 0
Theo bài ra , ta có : ( a+2)2-a2= 56
<=> a2+4a+4-a2=56
<=> 4a=56-4
<=> 4a=52
<=> a=13
Vậy 2 số tự nhiên lẻ liên tiếp là : 13; 15
Gọi số cần tìm là ab (a khác 0; a,b < 10)
Theo bài ra ta có:
ab + ba = 10a + b + 10b + a = 11a + 11b = 11(a + b)
Vì a + b là số chính phương nên a + b chia hết cho 11.
Mà 1 ≤ a < 10
2 ≤ b < 10
=> 3 ≤ a + b < 20
=> a + b = 11. Mà a < b
Ta có bảng sau :
a | 2 | 3 | 4 | 5 |
b | 9 | 8 | 7 | 6 |
Mà ba (gạch đầu) là số nguyên tố nên ba = 83
Vậy ab = 38
Gọi số cần là ab(a+b=16).
Vì khi đổi chỗ 2 chữ số của nó cho nhau thì được 1 số kém số ban đầu là 18.
Do đó: \(ba-ab=18\)
\(\Rightarrow10b+a-10a-b=18\)
\(\Rightarrow9b-9a=18\)
\(\Rightarrow9\left(b-a\right)=18\)
\(\Rightarrow b-a=2\)
Mà \(a+b=16\)
\(\Rightarrow a=\left(16-2\right):2=7\)
\(\Rightarrow b=a+2=7+2=9\)
Vậy số cần tìm là \(79\)
3. a) Coi A = ab+1
A = 111...11(n chữ số 1) .10n + 5 .111...11(n chữ số 1) + 1
\(A= \frac {10^n - 1} {9} + 5 \frac { 10^n -1} {9}+1
\)
\(A= \frac {10^2n - 10^n + 5.10^n -5 + 9} {9}\)
\(A =\frac {10^{2n} + 4.10^n + 4} {9}\)
\(A =\frac {(10^n + 2)^2} {3^2}\)
\(A=(\frac{10^n+2} {3}) ^2\)
Vậy A là số chính phương (vì 10n+2 chia hết cho 3)
b)Ta thấy 16 = 1.15 + 1
1156 = 11.105 + 1
111556 = 111.1005 + 1
... 111...1555...56(n chữ số 1,n-1 chữ số 5) = 111...1(n chữ số 1).100...05(n-1 chữ số 0) +1 (phần a)
Vẫy các số hạng trong dãy trên đều là số chính phương
3a)(dấu * là nhân nhé)
Có ab+1
=11...1*100...05+1
=11...1*(33...35(n-1 chữ số 3)*3)+1
=33...3*33...35+1
=33...3*(33...34+1)+1
=33...3*33...34+(33...3+1)
=33...3*33...34+33...34(n-1 chữ số 3)
=33...34*(33...3+1)
=33...34*33...34(n-1 chữ số 3)
=(33...34)^2 là số chính phương