K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
23 tháng 6

Gọi chữ số hàng chục là: \(a\left(a\inℕ^∗,a\le9\right)\)

Theo đề, suy ra chữ số hàng đơn vị là: \(10-a\)

Số phải tìm có dạng: \(\overline{a\left(10-a\right)}\)

Nếu đổi chỗ, ta được số: \(\overline{\left(10-a\right)a}\)

Mà: Nếu đổi chỗ hai chữ số ấy ta được số mới hơn số cũ 18

Nên ta có pt:

\(\overline{\left(10-a\right)a}-\overline{a\left(10-a\right)}=18\\ \Leftrightarrow\overline{\left(10-a\right)0}+a-\left(\overline{a0}+10-a\right)=18\\ \Leftrightarrow10\left(10-a\right)+a-10a-10+a=18\\ \Leftrightarrow100-10a+a-10a-10+a-18=0\\ \Leftrightarrow-18a+72=0\\ \Leftrightarrow-18a=-72\\ \Leftrightarrow a=4\left(TMDK\right)\)

Vậy SPT là: 46

23 tháng 6

tổng của 2 số đó là 10 nên ta có: a + b = 10

nếu đổi chỗ thì số mới hơn số cũ là: \(\overline{ba}=\overline{ab}+18\)

\(\overline{ab}=10a+b;\overline{ba}=10b+a \)

ta có: 10b + a = 10a + b + 18

10b + a - 10a - b = 18

9b - 9a = 18

b - a = 2

ta có hệ phương trình: 

\(\cdot a+b=10\\ \cdot b-a=2\)

(a + b) + (b - a) = 10 + 2

a + b + b - a = 12

2b = 12

b = 6

thay b = 6 vào a + b = 10

a + 6 = 10

a = 4

vậy số cần tìm là 46

Gọi số cần tìm là \(\overline{ab}\)

Theo đề, ta có hệ:

a+b=12 và 10b+a-10a-b=18

=>a+b=12 và -9a+9b=18

=>a+b=12 và a-b=-2

=>a=5; b=7

Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))

Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)

Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)

\(\Leftrightarrow10b+a-10a-b=36\)

\(\Leftrightarrow-9a+9b=36\)

\(\Leftrightarrow a-b=-4\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)

Vậy: Số cần tìm là 59

10 tháng 4 2020

gọi số cần tìm là \(\overline{xy}\)

ta có hệ

\(\hept{\begin{cases}5x-y=12\\\left(10y+x\right)-\left(10x+y\right)=36\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}5x-y=12\\-9x+9y=36\end{cases}=>\hept{\begin{cases}45x-9y=108\\-45x+45y=180\end{cases}=>\hept{\begin{cases}36y=288\\5x-y=12\end{cases}=>\hept{\begin{cases}y=8\\5x=20\end{cases}}}}}\)

\(\Rightarrow\hept{\begin{cases}y=8\\x=4\end{cases}}\)

zậy số cần tìm là 48

10 tháng 5 2021

Gọi 2 c số t nhiên đó là a, b (đk)

 tổng các bình phương của hai chữ số bằng 50 ...=> a2+b2=5a2+b2=50  (*)

và nếu đổi chỗ hai chữ số cho nhau thì ta được một số mới lớn hơn số ban đầu 54 đơn vị => ba-ab=54

                                                                                                                                     <=> b-a=4=> a+4=b

Thay vào giải ra vô nghiệm

Gọi số tự nhiên cần tìm là ab(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a< 10\\0< b< 10\end{matrix}\right.\))

Vì số đó gấp 9 lần tổng các chữ số của nó nên ta có phương trình:

\(10a+b=9\left(a+b\right)\)

\(\Leftrightarrow10a+b=9a+9b\)

\(\Leftrightarrow10a+b-9a-9b=0\)

\(\Leftrightarrow a-8b=0\)(1)

Vì khi đổi chỗ hai chữ số thì ta được số mới kém số ban đầu 63 đơn vị nên ta có phương trình:

\(10b+a+63=10a+b\)

\(\Leftrightarrow10b+a+63-10a-b=0\)

\(\Leftrightarrow-9a+9b=-63\)

\(\Leftrightarrow-9\left(a-b\right)=-9\cdot7\)

\(\Leftrightarrow a-b=7\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a-8b=0\\a-b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7b=-7\\a=7+b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=7+1=8\end{matrix}\right.\)

Vậy: Số ban đầu là 81

30 tháng 1 2021

Gọi số cần tìm là \(\overline{ab}\)

Theo bài ta có :

\(\overline{ab}=9\left(a+b\right)\)

\(\Leftrightarrow10a+b=9a+9b\)

\(\Leftrightarrow a=8b\)

\(\Leftrightarrow a-8b=0\) \(\left(1\right)\)

Lại có : Khi đổi chỗ 2 chữ số thì đc số mới kém số ban đầu 2 đơn vị 

\(\Leftrightarrow\overline{ab}-\overline{ba}=63\)

\(\Leftrightarrow10a+b-10b-a=63\)

\(\Leftrightarrow9a-9b=0\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=1\end{matrix}\right.\)

Vậy.....

Gọi số cần tìm có dạng là \(\overline{ab}\)

Theo đề,ta có: a+b=9 và 10b+a-10a-b=45

=>a=2; b=7

gọi số có 2 chữ số đó là: \(\overline{ab}\)

theo đề bài ta có:\(4a-b=17\Rightarrow b=4a-17\)

\(\overline{ab}-\overline{ba}=18\)

\(\Leftrightarrow10a+b-10b-a=18\)

\(\Leftrightarrow9a-9b=18\)

\(\Leftrightarrow a-b=2\)

\(\Leftrightarrow a-\left(4a-17\right)=2\)

\(\Rightarrow-3a=2-17\)

\(\Leftrightarrow-3a=-15\)

\(\Leftrightarrow a=5\)

ta lại có:\(4a-b=17\)

\(4\times5-b=17\)

\(b=3\)

vậy số cần tìm là \(53\)

3 tháng 2 2021

Gọi số cần tìm là \(\overline{xy}\)

+) Do hiệu của 3 lần chữ số hàng chục với 2 lần chữ số hàng đơn vị là 11 nên ta có phương trình               \(3x-2y=11\left(1\right)\)

+) Lại có, nếu đổi chữ số hàng chục và hàng đơn vị cho nhau, ta sẽ được 1 số mới nhỏ hơn số cũ 18 đơn vị, hay

\(\overline{xy}-\overline{yx}=18\Leftrightarrow\left(10x+y\right)-\left(10y+x\right)=18\Leftrightarrow9x-9y=18\Leftrightarrow x-y=2\left(2\right)\)

Từ (1) và (2), ta có hệ phương trình:

\(\left\{{}\begin{matrix}3x-2y=11\\x-y=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}3x-2y=11\\2x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=5\end{matrix}\right.\)

Vậy số cần tìm là 75

3 tháng 2 2021

Gọi số cần tìm là \(\overline{ab}\) (0<a<10; 0<b<10) => 3a - 2b = 11      (1)

Khi đổi chỗ hai chữ số cho nhau được số mới là \(\overline{ba}\)

Do số mới nhỏ hơn số cũ 18 đơn vị => \(\overline{ab}\) - \(\overline{ba}\) = 18 

                                                         ⇔ 10a + b - 10b - a = 18

                                                          ⇔ 9a - 9b = 18              (2)

Từ (1) và (2) ta có hệ phương trình:\(\left\{{}\begin{matrix}3a-2b=11\\9a-9b=18\end{matrix}\right.\)\(\left\{{}\begin{matrix}9a-6b=33\\9a-9b=18\end{matrix}\right.\)

                                                                                  ⇔\(\left\{{}\begin{matrix}-3b=-15\\9a-9b=18\end{matrix}\right.\)

                                                                                   ⇔\(\left\{{}\begin{matrix}a=7\\b=5\end{matrix}\right.\) (tm)

Vậy số cần tìm là 75