Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (n+3) Chia hết cho (n-1)
Ta có : (n+3)=(n-1)+4
Vì (n-1) chia hết cho (n-1)
Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)
=> n-1 thuộc Ư(4)={1;2;4}
n-1 1 2 4
n 2 3 5
Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)
b)(4n+3) chia hết cho (2n+1)
Ta có : (4n+3)=2n.2+1+2
Vì (2n+1) chia hết cho (2n+1)
Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)
=> 2n+1 thuộc Ư(3)={1;3}
2n+1 1 3
2n 0 2
n 0 1
Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)
2n+1 chia hết cho 6-n
2.(6-n) chia hết cho 6-n
=> 2n+1+2.(6-n) chia hết cho 6-n
=>2n+1+12-2n chia hết cho 6-n
=> 13 chia hết cho 6-n
=>6-n \(\in\)Ư(13)={1;-1;13;-13}
=>n\(\in\){5;7;-7;19}
\(6n+7⋮2n-1\Leftrightarrow6n-3+10=3\left(2n-1\right)+10⋮2n-1\)
Hay \(10⋮2n-1\)
Do đó 2n-1 là ước của 10
Do 2n-1 lẻ nên 2n-1 là ước lẻ của 10, do đó 2n*1 có các giá trị là 1 và 5
Từ đó tính được n=1 và n=3
\(7+6n⋮2n-1\Leftrightarrow6n-3+10⋮\left(2n-1\right)\)
\(\Leftrightarrow3.\left(2n-1\right)+10⋮\left(2n-1\right)\)
\(\Leftrightarrow10⋮\left(2n-1\right)\) ( vì \(3.\left(2n-1\right)⋮\left(2n-1\right)\) )
\(\Leftrightarrow2n-1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Mà \(\left(2n-1\right):2\) dư 1 và \(n\in N\) nên \(2n-1=\pm1;5\)
Với 2n - 1 có giá trị lần lượt bằng: -1;1;5 thì n có giá trị lần lượt bằng : 0;1;3
Vậy \(n=0;1;3\)
7+6n chia hết cho 2n-1
10+6n-3 chia hết cho 2n-1
10+3(2n-1) chia hết cho 2n-1
=>10 chia hết cho 2n-1 hay 2n-1EƯ(10)={1;2;5;10}
=>2nE{2;3;6;10}
=>nE{1;3;5}
\(33-6n=30+3-6n=30-3\left(2n-1\right)\)
Để \(33-6n⋮2n-1\) thì \(\left(2n-1\right)\inƯ\left(30\right)=\left\{1;2;3;5;6;10;15;30\right\}\)
Mà \(n\in N\Rightarrow n\in\left\{1;2;3;8\right\}\)