Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\)chia cho \(5\)dư \(4\)nên \(y=4\)hoặc \(y=9\)mà \(A\)chia hết cho \(2\)nên \(y=4\).
Do \(A\)chia hết cho \(3\)nên tổng các chữ số của nó chia hết cho \(3\):
\(\left(5+x+1+4\right)⋮3\Leftrightarrow\left(x+1\right)⋮3\Rightarrow x\in\left\{2,5,8\right\}\).
n+1 chia hết cho n-4
=> n-4+5 chia hết cho n-4
=> n-4 chia hết cho n-4 ; 5 chia hết cho n-4
=> n-4 thuộc Ư(5)={1,5}
n-4=1 => n=5
n-5=5 => n=10
Vậy b={5,10}
n + 1 \(⋮\)n - 4
=> n - 4 + 5 \(⋮\)n - 4 mà n - 4 \(⋮\)n - 4 => 5 \(⋮\)n - 4
=> n - 4 \(\in\)Ư ( 5 ) = { 1 ; 5 }
=> n \(\in\){ 5 ; 9 }
Vậy n \(\in\){ 5 ; 9 }
Tìm số tự nhiên nhỏ nhất chia cho 5 dư 3,chia 7 dư 4,cho 9 dư 5.
Giải cả bài ra,đúng thì mik tick cho
Khi xét 1 số tự nhiên chia cho 10
=>Có thể xảy ra trường hợp về số dư (1)
Mà các số tự nhiên từ 11 đến 21 gồm (21-) +1=11 số
Biết mỗi số cộng với đúng số thứ tự của nó được 1 tổng
=> Có 11 tổng,mỗi tổng đều có giá trị là 1 số tự nhiên (2)
Từ (1) và (2) => trong 11 tổng trên chắc chắn có 2 tổng cùng số dư khi chia cho 11
=> luôn 2 tổng có hiệu chia hết cho 10
Nha bạn
số chia cho 3 thì chỉ có thể dư 1 hoặc dư 2 mà 2 số tự nhiên đó chia 3 có số dư khác nhau nên 1 số chia 3 dư 1 và 1 số chia 3 dư 2
Số chia 3 dư 1 + Số chia 3 dư 2= số chia hết cho 3
là vậy đó
a) TH1 : a,b chia 3 dư 1
Đặt a = 3k + 1 ( k thuộc N )
Đặt b = 3t + 1 ( t thuộc N )
ab - 1 = ( 3k + 1 ). ( 3t + 1 ) - 1
= 9kt + 3k + 3t + 1 - 1
= 9kt + 3k + 3t chia hết cho 3 ( đpcm )
TH2 : a,b chia 3 dư 2
Đặt a = 3k + 2 ( k thuộc N )
Đặt b = 3t + 2 ( t thuộc N )
ab - 1 = ( 3k + 2 ). ( 3t + 2 ) - 1
= 9kt + 6k + 6t + 4 - 1
= 9kt + 6k + 6t + 3 chia hết cho 3 ( đpcm )
b) Vì a, b có số dư khác nhau
=> một số chia 3 dư 1
một số chia 3 dư 2
Đặt a = 3k + 1 ( k thuộc N )
b = 3t + 2 ( t thuộc N )
ab + 1 = ( 3k + 1 ) .( 3t + 2 ) + 1
= 9kt + 6k + 3t + 2 + 1