Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các số trong phương trình là 1, vì vậy ta có: 3a + 2b + c = 1.
Với số tự nhiên a, b và c, ta có thể thử các giá trị để tìm bộ ba số thỏa mãn phương trình.
Ví dụ, ta có thể thử a = 1, b = 1 và c = -4, thì 3a + 2b + c = 3 + 2 + (-4) = 1, phương trình được thỏa mãn.
Vậy, một bộ ba số tự nhiên khác 0 thỏa mãn phương trình đã cho là a = 1, b = 1 và c = -4.
Câu 2: Ta có:
abc=(bca+cab):2
=>2.abc=bca+cab
=>200a+20b+2c=101b+110c+11a
=>189a=81b+108c
=>7a=3b+4c
Tìm được 4 số: 481;629;518;592
Ta có : 3a +5 b = 8c
=> 3a +5b -8b = 8c -8b
=> 3a- 3 b = 8.[c-b]
=> 3.[a-b] = 8.[c-b]
=> 3.[a-b] chia hết cho 8
Đang bí nghi đã
Câu hỏi của Nguyễn Hà Vi 47 - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo nhé! Cách làm như thế này cả lớp 6 và lớp 7 đều dùng đc !
=>(100a+10b+c)+(100b+10c+a)+(100c+10a+b)=666
=>(100a+10a+a)+(100b+10b+b)+(100c+10c+c)=666
=>111a+111b+111c=666
=>111(a+b+c)=666
=>a+b+c=666:111=6
=>a+b+c=3+2+1
Mà a>b>c>0
=>a=3;b=2;c=1
Vậy abc=321
Bài giải
abc + cab + bca = 666
a . 100 + b . 10 + c + c . 100 + a . 10 + b + b . 100 + c . 10 + a = 666
a ( 100 + 10 + 1 ) + b ( 100 + 10 + 1 ) + c ( 100 + 10 + 1 ) = 666
a . 111 + b . 111 + c . 111 = 666
111 . ( a + b + c ) = 666
a + b + c = 666 : 111
a + b + c = 6
Vì abc \(\in\) N và a > b > c nên abc = 321
ta thấy a+b+c phải bằng 6
a hoặc b hoặc c không thể bằng 4,5,6 vì nếu a =4 thì b=2 c=0 hoặc a=4 thì b=1 c=1 mà a,b,c là các chữ số khác nhau
a,b,c phải bằng 1 hoặc 2 hoặc 3
vậy a,b,c bằng:
nếu a=3 thì b=2 c=1
a=3 thì b=1 c=2
a=2 thì b=3 c=1
a=2 thì b=1 c=3
a=1 thì b=2 c=3
a=1 thì b=3 c=2