K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Lời giải:

a. Đặt $a=6x, b=6y$ với $x,y$ là 2 số nguyên tố cùng nhau 

$a>b\Rightarrow x>y$

$BCNN(a,b)=6xy=120$

$\Rightarrow xy=20$
Vì $x>y$ và $x,y$ nguyên tố cùng nhau $(x,y)=(20,1)$ hoặc $(x,y)=(5,4)$

$\Rightarrow (a,b)=(120,6)$ hoặc $(a,b)=(30,24)$

b. Bạn làm tương tự.

19 tháng 12 2021

a: a=36

b=6

19 tháng 12 2021

bài này t biết làm nè nhưng dài quá bạn có zalo ko mik chụp cho

2 tháng 12 2017

1)do 72=23.32

nên ít nhất trong 2 số a, b có một số chia hết cho 2

giả sử a chia hết cho 2 => b=42-a cũng chia hết cho 2

=> a và b đều chia hết cho 2.

tương tự ta cũng có a và b chia hết cho 3

=> a và b đều chia hết cho 6.

dễ thấy 42=36+6=30+12=18+24 (tổng 2 số chia hết cho 6)

trong 3 tổng trên chỉ có cặp 18 và 24 là thỏa mãn.

=> a=18 và b=24

2)Đặt ƯCLN(a;b)=d

Vậy a=dm   ;  b=dn      (m>n vì a-b là số nguyên dương)

a-b=dm-dn=d.(m-n)=7=7.1=1.7

Với d=7 thì ƯCLN(a;b)=7, Mà a.b=ƯCLN(a;b).BCNN(a;b) => a.b=7.140=980

Khi đó: a=7m ; b=7n  => a.b=7m.7n=49.m.n=980 => m.n =20=5.4=10.2 (do m>n nên không có trường hợp 4.5 và 2.10

      + Khi m=5 ; n=4 thì a=7.5=35 ; b=7.4=28

      +Khi m=10 ; n=2 thì a=7.10=70 ; b=7.2=14

Với d=1 thì ƯCLN(a;b)=1 => a.b=1.140=140

Khi đó: a=1m=m ; b=1n=n  =>

a.b=m.n=140 => m.n=140.1=35.4=28.5=70.2

<=> a.b=140.1=35.4=28.5=70.2

Đó chính là các giá trị a,b thỏa mãn

cn mấy ý khác bn dựa vào tự làm nha!

2 tháng 12 2017

sorry nha mk trả lời lại:2:   a-b = 7 ;BCNN(a;b) = 140

=>140:m- 140:n =7

140 : (m-n) = 7

=>m-n = 20

a,b ko co gia tri

12 tháng 11 2021

a. (a,b)=(1,7),(2,6),(3,5),(4,4), (5,3),(6,2), (7,1), (0,8), (8,0)

b.(a,b)=(6,36),(12,18),(18,12),(36,6)

12 tháng 11 2021

Sao no kieu sai sai vay troi?

1. 

 \(ƯCLN\left(a,b\right)=7\)

\(\Rightarrow a,b\)chia hết cho 7

\(\Rightarrow a,b\in B\left(7\right)\)

\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)

a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)

\(\Rightarrow a=56;b=0.a=0;b=56\)

\(a=7;b=49.a=49;b=7\)

\(a=14;b=42.a=42;b=14\)

\(a=21;b=35.a=35;b=21\)

\(a=b=28\)

b, a.b=490 \(\Rightarrow a< 490;b< 490\)

\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)

          \(a=14;b=35-a=35;b=14\)

c, BCNN (a,b) = 735

\(\Rightarrow a,b\inƯ\left(735\right)\)

\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)

\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)

2. 

a+b=27\(\Rightarrow\)\(a\le27;b\le27\)

ƯCLN(a,b)=3

\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)

BCNN(a,b)=60

\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)

\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)

15 tháng 10 2023

 Trước tiên, ta cần chứng minh 2 bổ đề sau:

 Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó  \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\)

 Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)

 Chứng minh:

 Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)

  Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.

 Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)

 \(\Leftrightarrow kl-k-l+1\ge0\)

 \(\Leftrightarrow kl+1\ge k+l\)

 \(\Leftrightarrow dkl+d\ge dk+dl\)

 \(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)

Vậy 2 bổ đề đã được chứng minh.

a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)

 Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:

  \(a\in\left\{15;30;45\right\}\)

 Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)

 Nếu \(a=30\) thì \(b=90\) (loại)

 Nếu \(a=45\) thì \(b=60\) (thỏa)

 Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)

Câu b làm tương tự.

15 tháng 10 2023

 Ko bt