K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

22 tháng 11 2019

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

AH
Akai Haruma
Giáo viên
15 tháng 12 2022

Lời giải:
Đặt $n+31=a^2$ với $a$ tự nhiên. Khi đó: $2n+5=2(a^2-31)+5=2a^2-57$
Như vậy, ta cần tìm $a$ sao cho $2a^2-57$ là số chính phương.

Ta có 1 tính chất quen thuộc: Số chính phương lẻ chia 8 dư $1$ (bạn có thể xét 1 scp $x^2$ và xét các TH $x=4k+...$ để cm)

$\Rightarrow 2a^2-57\equiv 1\pmod 8$

$\Rightarrow 2a^2\equiv 58\pmod 8$

$\Rightarrow a^2\equiv 29\equiv 5\pmod 8$

(điều này vô lý do scp chia 8 dư 0,1 hoặc 4)

Vậy không tồn tại số tự nhiên $a$, tức là không tồn tại số $n$ cần tìm.

17 tháng 8 2016

đặt ab+4=x^2(xϵN)

→ab=x^2-4=(x-2)(x+2)

→b=\(\frac{\left(x-2\right)\left(x+2\right)}{a}=\frac{x-2}{a}.\left(x+2\right)\)  

để b là số tự nhiên thì x-2 chia hết cho a

Ta chọn x-2=a

→b=a+4

Vậy với a ϵ N luôn tìm được số tự nhiên b sao cho ab+4 là số chính phương

17 tháng 8 2016

Gỉa sử ab - 4 là x^2 

Ta có

\(ab+4=x^2\)

\(\Rightarrow ab=x^2-2^2\)

\(\Rightarrow ab=\left(x+2\right)\left(x-2\right)\)

(+) Nếu a=x+2

=> b=x - 2

(+( Nếu a=x - 2

=> b=x+2

Vậy a ; b thỏa mãn \(\left(a;b\right)\in\left\{\left(x+2;x-2\right);\left(x-2;x+2\right)\right\}\) Với x là số tự nhiên

19 tháng 7 2015

hui sài hằng đẳng thức thui

4 tháng 9 2018

Bài khá dễ nhé bạn :

\(a^2+10a+25+1939=n^2\Rightarrow\left(a+5\right)^2+1939=n^2\Rightarrow\left(a+5-n\right)\left(a+5+n\right)=1939\)

\(\left(a+5-n\right)\left(a+5+n\right)=1.1939=7.277\)

Ta có 2 TH ( vì a+5+n > a+5 -n ) sau : 

\(\hept{\begin{cases}a+5-n=1\\a+5+n=1939\end{cases}}\)và \(\hept{\begin{cases}a+5-n=7\\a+5+n=277\end{cases}}\)

TH1: 

\(2a+10=1940\Rightarrow a=\frac{1940-10}{2}=965\)( loại khi thử lại )

TH2:

\(2a+10=284\Rightarrow a=137\)(loại khi thử lại ) 

Suy chẳng có số nào thõa mãn đề bài trên