Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3 ta có
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5(1)
giả sử a chia cho 7 được c dư 4 ta có
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7(2)
giả sử a chia cho 9 được d dư 5 ta có
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9(3)
từ 1, 2 và 3 ta có 2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
suy ra 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158
Vì a:3 dư 2 => a+1 chia hết cho 3=> a+1+3 chia hết cho 3=>a+1+3.7 chia hết cho 3=>a+52 chia hết cho 3
Vì a:5 dư 3 => a+2 chia hết cho 5=> a+2+5 chia hết cho 5=>a+2+5.7 chia hết cho 5=>a+52 chia hết cho 5
Vì a:7 dư 4 => a+3 chia hết cho 7=> a+3+7 chia hết cho 7=>a+3+7.7 chia hết cho 5=>a+52 chia hết cho 7
=>a+52 là BC của 3;5;7
Vì 3;5;7 là đôi một số nguyên tố nên BC của 3;5;7 = 3.5.7=105
=>a=52=105
a=105-52
a= 53
Vậy số TN nhỏ nhất cần tìm là 53.
Vì a:3 dư 2 => a+1 chia hết cho 3=> a+1+3 chia hết cho 3=>a+1+3.7 chia hết cho 3=>a+52 chia hết cho 3
Vì a:5 dư 3 => a+2 chia hết cho 5=> a+2+5 chia hết cho 5=>a+2+5.7 chia hết cho 5=>a+52 chia hết cho 5
Vì a:7 dư 4 => a+3 chia hết cho 7=> a+3+7 chia hết cho 7=>a+3+7.7 chia hết cho 5=>a+52 chia hết cho 7
=>a+52 là BC của 3;5;7
Vì 3;5;7 là đôi một số nguyên tố nên BC của 3;5;7 = 3.5.7=105
=>a=52=105
a=105-52
a= 53
Vậy số TN nhỏ nhất cần tìm là 53.
Tìm số tự nhiên a nhỏ nhất sao cho khi chia a cho 3 cho 5 cho 7 thì được số dư theo thứ tự là 2;3;4
\(a=3k+2\Rightarrow2a=6k+4=\left(6k+3\right)+1\)
\(a=5m+3\Rightarrow2a=10m+6=\left(10m+5\right)+1\)
\(a=7n+4\Rightarrow2a=14n+8=\left(14n+7\right)+1\)
Ta nhận thấy \(2a-1\) là một số chia hết cho cả 3; 5 và 7
Để a nhỏ nhất \(\Rightarrow2a-1=BSCNN\left(3;5;7\right)=105\Rightarrow a=53\)
theo bài ra ta có:
a+1 chia hết cho 3
a+1 chia hết cho 5
a+1 chia hết cho 7
từ các điều trên⇒⇒ a+1chia hết cho 3;5;7
⇒⇒ a +1 ∈∈ BC(3;5;7)
Vì (3;5;7)=1
⇒⇒ BCNN|(3;5;7)=3.5.7=105
⇒⇒BC(3;5;7)=B(105)={0;105;210;.....}{0;105;210;.....}
Mà a nhỏ nhất khác 0⇒a+1⇒a+1 nhỏ nhất khác 0
⇒a+1⇒a+1 =105
a = 105 -1
a = 104
Vậy a=104
+,Ta có a:3 dư 2 suy ra a=3m+2(m thuộc N) suy ra 2a= 6m +4 chia cho 3 dư 1 suy ra 2a-1 chia hết cho 3 (1)
+,Ta có a:5 dư 3 suy ra a =5n+3 (n thuộc N) suy ra 2a=10n+6 chia cho 5 dư 1 suy ra 2a-1 chia hết cho 5 (2)
+,Ta có a:7 dư 4 suy ra a=7p+4(p thuộc N) suy ra 2a=14p+8 chia cho 7 dư 1 suy ra 2a-1 chia hết cho 5 (3)
Từ (1),(2),(3) suy ra 2a-1 phải nhỏ nhất
d Đó 2a-1 la BCNN(3,5,7)
3=3,5=5,7=7
Suy ra BCNN(3,5,7)=3.5.7=105
Suy ra 2a-1=105
2a=105+1
2a=106
a=106:2
a=53
Vậy a = 53
Tick mình nha
+,Ta có a:3 dư 2 suy ra a=3m+2(m thuộc N) suy ra 2a= 6m +4 chia cho 3 dư 1 suy ra 2a-1 chia hết cho 3 (1)
+,Ta có a:5 dư 3 suy ra a =5n+3 (n thuộc N) suy ra 2a=10n+6 chia cho 5 dư 1 suy ra 2a-1 chia hết cho 5 (2)
+,Ta có a:7 dư 4 suy ra a=7p+4(p thuộc N) suy ra 2a=14p+8 chia cho 7 dư 1 suy ra 2a-1 chia hết cho 5 (3)
Từ (1),(2),(3) suy ra 2a-1 phải nhỏ nhất
d Đó 2a-1 la BCNN(3,5,7)
3=3,5=5,7=7
Suy ra BCNN(3,5,7)=3.5.7=105
Suy ra 2a-1=105
2a=105+1
2a=106
a=106:2
a=53
Vậy a = 53
Tick mình nha
ban oi , sai de bai roi!
Tìm số tự nhiên nhỏ nhất mà số đó chia cho 5, cho 7, cho 9 có số dư theo thứ tự là 3, 4, 5.? moi dung
Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3 ta có
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5(1)
giả sử a chia cho 7 được c dư 4 ta có
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7(2)
giả sử a chia cho 9 được d dư 5 ta có
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9(3)
từ 1, 2 và 3 ta có 2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
suy ra 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158
Co gi ban lam tuong tu nha!
Vì a:3 dư 2 => a+1 chia hết cho 3=> a+1+3 chia hết cho 3=>a+1+3.7 chia hết cho 3=>a+52 chia hết cho 3
Vì a:5 dư 3 => a+2 chia hết cho 5=> a+2+5 chia hết cho 5=>a+2+5.7 chia hết cho 5=>a+52 chia hết cho 5
Vì a:7 dư 4 => a+3 chia hết cho 7=> a+3+7 chia hết cho 7=>a+3+7.7 chia hết cho 5=>a+52 chia hết cho 7
=>a+52 là BC của 3;5;7
Vì 3;5;7 là đôi một số nguyên tố nên BC của 3;5;7 = 3.5.7=105
=>a=52=105
a=105-52
a= 53
Vậy số TN nhỏ nhất cần tìm là 53.