Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
Gọi số cần tìm là a. Ta có
a + 6 chia hết cho 11 suy ra ( a+6) +77 chia hết cho 11 (1)
a+ 5 chia hết chỏ suy ra ( a+5) +78 chia hết cho 13 suy ra a+ 83 chia hết cho 13 (2)
a +83 chia hết cho 143
Từ (1) và (2) => a = 143k -83 ( k \(\in\) N* )
để được a nhỏ nhất có 3 chữ số ta chọn k = 2, được a = 203
Vậy số cần tìm là 203.
Gọi số cần tìm là a thì a+8 ∈ BC(11;13) và a là số nhỏ nhất thỏa mãn 100≤a≤999
Ta có BCNN(11;13) = 11.13 = 143
BC(11;13) ∈ {0;143;286;...}
Vì a là số tự nhiên có ba chữ số nhỏ nhất nên a+8 = 143
a = 135
Vậy số cần tìm là 135
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
a chia 11 dư 5 ⇔ a = 11m + 5 ⇒ a + 6 = ﴾11m + 5 ﴿+ 6 = 11m + 11 = 11.﴾m + 1﴿ chia hết cho 11. ﴾m ∈ N﴿
Vì 77 chia hết cho 11 nên ﴾a + 6﴿ + 77 cũng chia hết cho 11 ⇔ a + 83 chia hết cho 11. (1)
a chia 13 dư 8 ⇔ a = 13n + 8 ⇒ a + 5 = ﴾13n + 8﴿ + 5 = 13n + 13 = 13.﴾n + 1﴿ chia hết cho 11. ﴾n ∈ N﴿
Vì 78 chia hết cho 13 nên ﴾a + 5﴿ + 78 cũng chia hết cho 13 ⇔ a + 83 chia hết cho 13. (2)
Từ (1) và (2) suy ra a + 83 chia hết cho BCNN﴾11; 13﴿ ⇔ a + 83 chia hết cho 143 ⇒ a = 143k ‐ 83 ﴾k ∈ N*﴿
Để a nhỏ nhất có 3 chữ số ta chọn k = 2. Khi đó a = 203
Gọi số tự nhiên nhỏ nhất cần tìm là : a (a \(\in\) N và a là số tự nhiên nhỏ nhất có 3 chữ số)
Vì khi chia a cho 11; 13 đều đc số dư lần lượt là 3; 5 => a + 8 chia hết cho 11; 13
=> a + 8 \(\in\) BC(11;13)
=> Ta có: 11 = 11
13 = 13
=> BCNN(11;13) = 11.13 = 143
=> BC(11;13) = B(143) = {0;143;286;429;572;715;......}
=> a + 8 \(\in\) B(143)
=> a \(\in\) {-8;135;278;421;564;707;.....}
Mà a \(\in\) BC(11;13) và a là số tự nhiên nhỏ nhẩ có 3 chữ số nên
a = 135
Vậy số tự nhiên nhỏ nhất có 3 chữ số cần tìm là: 135.