Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$
`2A - A = - 1 + 2^42`$\\$
hay `A = -1 + 2^42`$\\$
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^{41})` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^{42} - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^42`$\\$
`2A - A = - 1 + 2^{42}`$\\$
hay `A = -1 + 2^{42}`$\\$
2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d
=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d
=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d 1
chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
Trả lời\
Câu 1 : Gọi số tự nhiên cần tìm là a ( a thuộc N ; a < 999 )
a chia 8 dư 7 => ( a + 1 ) chia hết cho 8
a chia 31 dư 28 => ( a + 3) chia hết cho 31
Ta có ( a + 1 ) + 64 chia hết cho 8 = ( a + 3 ) + 62 chia hết cho 31
Vậy ( a + 65 ) chia hết cho 8 và 31
=> a + 65 chia hết cho 248
Vì a < 999 nên ( a + 65 ) < 1064
Để a là số tự nhiên lớn nhất thỏa mãn điều kiện thì a cũng phải là số tự nhiên lớn nhất thỏa mãn
=> a = 927
Vậy số tự nhiên cần tìm là : 927
Bài 1.
Gọi số cần tìm là x (x X ; x 999)
x chia 8 dư 7 =>(x+1) chia hết cho 8
x chia 31 dư 28 =>(x+3)chia hết cho 31
Ta có (x+1 ) +64 chia hết cho 8 =(x+3)+62 chia hết cho 31
Vậy (x+65)chia hết cho 8 ;31
Mà ( 8;31)=1
=>x+65 cia hết co 248
Vì x 999 nên (x+ 65) 1064
Để x là số tự nhiên lớn nhất thõa mãn điều kiện thì cũng phải là số tự nhiên lớn nhất thõa mãn
=> x=927
Vậy số x cần tìm là:927
a chia 7 dư 1: 351
a chia 8 dư 2: 402
a chia hết cho 3: 150
351
402
150