Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2a+323=7b
=> 2a+7+316=7b
=> 2a+316=7b-7
=> 2a+316=7b-1
Xet a \(\ne\)0
=> 2a+316 là số chẵn
Mà 7b-1 là số lẻ (vô lý)
=> a=0
=> 20+316= 7b-1
=> 1+316=7b-1
=> 7b-1=317 ( vo ly vi a;b la so tu nhien )
a, ( x - 7 ) . 3 = 92 : 3
( x - 7 ) . 3 = 81 : 3
( x - 7 ) . 3 = 27
x - 7 = 27 : 3
x - 7 = 9
x = 9 + 7
x = 16
b, ( 5 + x ) . 2 = 82 : 4
( 5 + x ) . 2 = 64 : 4
( 5 + x ) . 2 = 16
5 + x = 16 : 2
5 + x = 8
x = 8 - 5
x = 3
1.
Đặt $A=2+2^2+2^3+...+2^{100}$
$2A=2^2+2^3+2^4+...+2^{101}$
$\Rightarrow 2A-A=2^{101}-2$
$\Rightarrow A=2^{101}-2$
Có:
$A+n=510$
$2^{101}-2+n=510$
$n=510+2-2^{101}=512-2^{101}$
2.
$A=7+(7^2+7^3)+(7^4+7^5)+....+(7^{20}+7^{21})$
$=7+7^2(1+7)+7^4(1+7)+...+7^{20}(1+7)$
$=7+(1+7)(7^2+7^4+....+7^{20})$
$=7+8(7^2+7^4+...+7^{20)$
$\Rightarrow A$ chia 8 dư 7.
1 /
abc = 198
2 /
Ta có: a,bc = 10 : ( a+b+c )
=> a,bc x (a + b + c) = 10
=> a,bc x 100 x (a + b + c) = 10 x 100
=> abc x (a + b + c) = 1000
=> 1000 phải chia hết cho abc
=> abc thuộc Ư(1000) = {100; 125; 200;250;500}
Xét từng trường ta thấy abc = 125 thỏa mãn
Vậy a.bc = 1,25
3 /
a ) Nhận thấy
5^b tận cùng là 5
mà 2^a + 124 tận cùng cũng phải là 5
=> 2^a tận cùng là 1 mà 2^a tận cũng là số chẵn trừ số 0
=> a = 0
ta có
2^0 + 124 = 5^b
=> 125 -= 5^b
=> 5^3 = 5^b
=> b = 3
Vậy a = 0 ; b = 3
b ) nhận thấy
cứ nhân 5 lần số 3 với nhau tận cùng là 3
mà có : 101 : 5 = 20 ( dư 1 )
sau khi có tận cùng là 3 ta nhân thêm 1 số 3 nữa được tận cùng là 9
4 /
a ) = 315
b ) = 216
c ) = 0 , 015555555555554
d ) = 2
nhé !
Bài 1:
A = 5 + 5^2 + 5^3 +...+ 5^8
A = ( 5 + 5^2 ) + ( 5^3 + 5^4 ) +...+ (5^7 +5^8)
A = 1.(5+5^2) + 5^2 . (5+5^2) +...+ 5^6.(5+5^2)
A = 1.30 + 5^2.30 +...+ 5^6.30
A = (1+5^2+...+5^6).30
Vì trong 2 thừa số có 1 thừa số chia hết cho 30 nên A chia hết cho 30
B = 3 + 3^3 + 3^5 +...+ 3^29
B = (3+ 3^3 +3^5)+...+(3^25+3^27+3^29)
B = 1.(3+3^3+3^5)+...+3^24. (3+3^3+3^5)
B = 1.273+...+3^24.273
B = (1+...+3^24).273
Vì trong 2 thừa số có 1 thừa số chia hết cho 273 nên B chia hết cho 273
A=5+5^2+5^3+...+5^20
=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)
=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)
=30+5^2.30+5^4.30+5^6.30+..+5^18.30
=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)
Vậy A là bội của 30