Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(512-\left(128-5x\right)=3x+12\\ 512-128+5x=3x+12\\ 384+5x=3x+12\\ 5x-3x=12-384\\ 2x=-372\\ x=\left(-372\right):2\\ x=-186\)
b)
\(\left(2x-1\right)+\left(4x-2\right)+...+\left(400x-200\right)=5+10+...+1000\\ \left(2x+4x+...+400x\right)-\left(1+2+...+200\right)=5+10+...+1000\\ x\left(2+4+...+400\right)=\left(5+10+...+1000\right)+\left(1+2+...+200\right)\\ 2x\cdot\left(1+2+...+200\right)=5\cdot\left(1+2+...+200\right)+1\cdot\left(1+2+...+200\right)\\ 2x\cdot\left(1+2+...+200\right)=\left(5+1\right)\cdot\left(1+2+...+200\right)\\ 2x\cdot\left(1+2+...+200\right)=6\cdot\left(1+2+...+200\right)\\ \Rightarrow2x=6\\ x=6:2\\ x=3\)
c)
\(\left(x+2\right)+\left(4x+4\right)+\left(7x+6\right)+...+\left(25x+18\right)+\left(28x+20\right)=1560\\ \left(x+4x+7x+...+25x+28x\right)+\left(2+4+6+...+18+20\right)=1560\\ x\left(1+4+7+...+25+28\right)+110=1560\\ 145x+110=1560\\ 145x=1560-110\\ 145x=1450\\ x=1450:145\\ x=10\)
d)
\(x+4x+5x+9x+14x+...+97x=500\\ x\left(1+4+5+9+14+...+97\right)=500\)
Dãy số trong ngoặc có quy luật: Số thứ \(n\) bằng số thứ \(n-1\) cộng số thứ \(n-2\)
Suy ra dãy số đó là: \(1+4+5+9+14+23+37+60+97=250\)
Thế vào ta được:
\(250x=500\\ x=500:250\\ x=2\)
e)
\(720-\left[41-\left(2x-5\right)\right]=2^3\cdot5\\ 720-41+\left(2x-5\right)=8\cdot5\\ 720-41+2x-5=40\\ \left(720-41-5\right)+2x=40\\ 674+2x=40\\ 2x=40-674\\ 2x=-634\\ x=\left(-634\right):2\\ x=-317\)
f)
\(697:\dfrac{15x+364}{x}=17\\ \dfrac{15x+364}{x}=697:17\\ \dfrac{15x+364}{x}=41\\ \dfrac{15x+364}{x}\cdot x=41x\\ 15x+364=41x\\ 364=41x-15x\\ 364=26x\\ x=364:26\\ x=14\)
a) x = 2.
b) x = 7.
c) x= 12.
d) x= 45.
e) x = 18.
f) x = 10.
a) 2x . 4 = 128
<=> 2x = 32
<=> 2x = 25
<=> x = 5
b) x15 = x1
<=> x15 - x = 0
<=> x(x14 - 1) = 0
<=> \(\orbr{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{14}=1^{14}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
c) (2x + 1)3 = 125
<=> (2x + 1)3 = 53
<=> 2x + 1 = 5
<=> 2x = 4
<=> x = 2
d) (x - 5)4 = (x - 5)6
<=> (x - 5)6 - (x - 5)4 = 0
<=> (x - 5)4[(x - 5)2 - 1] = 0
<=> \(\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^2-1=0\end{cases}}\)
Khi (x - 5)4 = 0 => x - 5 = 0 => x = 5
Khi (x - 5)2 - 1 = 0 <=> (x - 5)2 = 12 <=> \(\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)
a, 117 - \(x\) = 28 - (-7)
117 - \(x\) = 28 + 7
117 - \(x\) = 35
\(x\) = 117 - 35
\(x\) = 82
b, \(x\) - (-38 - 2\(x\)) = (-3) - 8 + 2\(x\)
\(x\) + 38 + 2\(x\) = - 11 + 2\(x\)
3\(x\) + 38 = - 11 + 2\(x\)
3\(x\) - 2\(x\) = - 11 - 38
\(x\) = - 49
1.
a, \(x-14=3x+18\)
\(\Rightarrow x-3x=18+14\)
\(\Rightarrow-2x=32\Rightarrow x=\frac{32}{-2}=-16\)
b, \(\left(x+7\right).\left(x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+7=0\\x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=9\end{cases}}}\)
c, \(\left|2x-5\right|-7=22\)
\(\Rightarrow\left|2x-5\right|=22+7\)
\(\Rightarrow\left|2x-5\right|=29\)
\(\Rightarrow\orbr{\begin{cases}2x+5=29\\2x-5=29\end{cases}}\Rightarrow\orbr{\begin{cases}2x=24\\2x=34\end{cases}\Rightarrow}\orbr{\begin{cases}x=12\\x=17\end{cases}}\)
d, \(\left(\left|2x\right|-5\right)-7=22\)
\(\Rightarrow\left(\left|2x\right|-5\right)=29\)
\(\Rightarrow\left|2x\right|=29+5\Rightarrow\left|2x\right|=34\Rightarrow x=\pm17\)
e, \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\)
Vì \(\left|x+3\right|\ge0;\left|x+9\right|\ge0;\left|x+5\right|\ge0;4x\ge0\)
Nên \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\ge0\)
\(\Rightarrow\left|x+3\right|>0\Rightarrow\left|x+3\right|=x+3\)
\(\left|x+9\right|>0\Rightarrow\left|x+9\right|=x+9\)
\(\left|x+5\right|>0\Rightarrow\left|x+5\right|=x+5\)
Ta có :
\(x+3+x+9+x+5=4x\)
\(\Rightarrow3x+\left(3+9+5\right)=4x\)
\(\Rightarrow4x-3x=17\)
\(\Rightarrow x=17\)
2. a , b sai đề bn
c, \(\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(\text{ }Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2/5 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
d, \(5xy-5x+y=5\)
\(\Rightarrow\left(5xy-5x\right)+y=5\)
\(\Rightarrow5x.\left(y-1\right)+y=5\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
\(a,2^x\cdot4=128\)
\(2^x=128:4=32\)
\(2^x=2^5\)
\(x=5\)
\(b,x^{15}=x\)
\(x^{15}-x=0\)
\(x\left(x^{14}-1\right)=0\)
\(\left\{{}\begin{matrix}x=0\\x^{14}-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(c,16^x< 128\)
\(2^{4x}< 2^7\)
\(4x< 7\)
\(x=1\)
d,\(5^x\cdot5^{x+1}\cdot5^{x+2}< 1000000000000000000:2^{18}\)
\(5^{x+x+1+x+2}< 10^{18}:2^{18}\)
\(5^{3x+3}< 5^{18}\)
\(3x+3< 18\)
\(3\left(x+1\right)< 18\)
\(x+1< 6\)
\(x< 5\)
\(e,2^x\cdot\left(2^2\right)^2=\left(2^3\right)^2\)
\(2^x\cdot2^4=2^6\)
\(2^{x+4}=2^6\)
\(x+4=6\)
\(x=2\)
\(f,\left(x^5\right)^{10}=x\)
\(x^{50}=x\)
\(x^{50}-x=0\)
\(x\left(x^{49}-1\right)=0\)
\(\left\{{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)