K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2018

\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\)

\(=6\left(x^2+y^2+z^2\right)+12\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)-2\left(xy+yz+xz\right)\)

\(=6\left(x+y+z\right)^2+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{2z+x+y}\right)-2\left(xy+yz+xz\right)\)

\(\ge6\left(x+y+z\right)^2+2.\dfrac{\left(1+1+1\right)^2}{2x+y+z+x+2y+z+2z+x+y}-2\left(xy+yz+xz\right)\)

\(=6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-2\left(xy+yz+xz\right)\)

\(\ge6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-\dfrac{2}{3}\left(x+y+z\right)^2\)

\(=6.\left(\dfrac{3}{4}\right)^2+\dfrac{18}{4.\dfrac{3}{4}}-\dfrac{2}{3}.\left(\dfrac{3}{4}\right)^2=9\)

\("="\Leftrightarrow x=y=z=\dfrac{1}{4}\)

6 tháng 11 2018

a) ab+bc+ca\(\le\dfrac{\left(a+c+b\right)^2}{3}\)

\(\Leftrightarrow3ab+3bc+3ac\le a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Leftrightarrow ab+bc+ac\le a^2+b^2+c^2\)

\(\Leftrightarrow2ab+2bc+2ca\le2a^2+2b^2+2c^2\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng \(\forall a,b,c\)

30 tháng 6 2020

Mả cha m

16 tháng 7 2018

Bài 2/ Không mất tính tổng quát giả sử: \(xy\ge0\)

\(\Rightarrow x^2+y^4+z^6\le x^2+y^2+z^2\le\left(x+y\right)^2+z^2=2z^2\le2\)

16 tháng 7 2018

Câu 3/

Dễ thấy n = 20 thì \(20^{20}\) có số lượng số lớn hơn 19 chữ số.

\(\Rightarrow n< 20\)

Xét \(n>2\) ta dễ thấy n phải là lũy thừa của 2 vì giải sử

\(n=\left(2k+1\right).2^a\)

\(\Rightarrow P=\left(n^{2a}\right)^{2a+1}+1=A.\left(n^{2a}+1\right)\)không phải là số nguyên tố.

\(\Rightarrow n=4;8;16\)

Xét \(n=1;2\) nữa là xong

PS: Thôi nghỉ không làm nữa

https://hoc24.vn/hoi-dap/question/1008948.html?pos=2676645

17 tháng 7 2016

Bài 1:

 Ta có: xy ≤ (x + y)²/4 = 1/4, dấu = xảy ra khi x = y = 1/2 
P = (x² + 1/y²)(y² + 1/x²) = (xy)² + 1 + 1 + 1/(xy)² 
= (xy)² + 1/[256(xy)²] + 255/[256(xy)²] + 2 
ta có: 
(xy)² + 1/[256(xy)²] ≥ 2 √(1/256) = 1/8. dấu = xảy ra khi x = y = 1/2 
255/[256(xy)²] + 2 ≥ 255/(256.1/16) + 2 = 287/16. dấu = xảy ra khi x = y = 1/2 
cộng theo vế → P ≥ 1/8 + 287/16 = 289/16 
vậy GTNN của P là 289/16, đạt được khi x = y = 1/2

6 tháng 11 2018

\(ab+bc+ca\le a^2+b^2+c^2\le\frac{\left(a+b+c\right)^2}{3}\) ( bđt phụ + Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

CM bđt phụ : \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

Chúc bạn học tốt ~