K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

đặt \(k^2=n^2+n+6\Rightarrow4k^2=4n^2+4n+24\Rightarrow\left(2k\right)^2=\left(2n+1\right)^2+23\)

\(\Rightarrow\left(2k\right)^2-\left(2n+1\right)^2=23\Rightarrow\left(2k+2n+1\right)\left(2k-2n-1\right)=23\Rightarrow\left\{{}\begin{matrix}2k+2n+1=23\\2k-2n-1=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2k+2n=22\\2k-2n=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k+n=11\\k-n=1\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}k=6\\n=5\end{matrix}\right.\)

vậy n=5

3 tháng 10 2018

Tham khảo ở đây:

https://diendantoanhoc.net/topic/154899-t%C3%ACm-s%E1%BB%91-t%E1%BB%B1-nhi%C3%AAn-n-sao-cho-s%E1%BB%91-a-n2n6-l%C3%A0-s%E1%BB%91-ch%C3%ADnh-ph%C6%B0%C6%A1ng/

Vì A là só chính phương nên đặt A =a2 với \(a\inℕ\), ta cần tìm n , a tự nhiên thỏa mãn 

\(n^2+n+6=a^2\)

\(\Rightarrow4n^2+4n+24=4a^2\)

\(\Rightarrow\left(4n^2+4n+1\right)+23=4a^2\)

\(\Rightarrow\left(2n+1\right)^2+23=4a^2\)

\(\Rightarrow\left(2a\right)^2-\left(2n+1\right)^2=23\)

\(\Rightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=23\)

Theo (1) ta  thấy : \(\hept{\begin{cases}2a-2n-1=1\\2a+2n+1=23\end{cases}}\)( Vì 2a +2n +1>2a-2n-1 và 2a+2n+1>0)

Từ đó ta tìm được a=6n=5.

Vậy n=5 là giá trị cần tìm 

3 tháng 10 2018

Cộng 1 vào 2 vế ta có: 
10x2+50y2+42xy+14x−6y+58≤010x2+50y2+42xy+14x−6y+58≤0
↔(x+7)2+(y−3)2+(3x+7y)2≤0↔(x+7)2+(y−3)2+(3x+7y)2≤0
↔x=−7,y=3↔x=−7,y=3
Vậy... 

Bạn tự ghi nha

chúc hok tốt

3 tháng 10 2018

Đặt A=n2+n+6=k2 (k thuộc N)

→4n2+4n+24=4k2

→(2n+1)2−4k2=−23

→(2n+1−4k)(2n+1+4k)=−23

Đến đây là PT ước số.Tự giải tiếp nhé :)

14 tháng 1 2020

 \(36^n-6\)là số chính phương khi đó tồn tại số nguyên dương k sao cho:

  \(36^n-6=k^2\)

Vì \(\hept{\begin{cases}36⋮6\\6⋮6\end{cases}}\)=> \(k^2⋮6\)=> \(k⋮6\)=> Đặt : k = 6t ( t nguyên dương )

Khi đó: \(36^n-6=36t^2\)

<=> \(6.36^{n-1}-1=6t^2\)

Vì \(6t^2⋮6\)\(6.36^{n-1}⋮6\)=> \(1⋮6\)vô lí

Vậy không tồn tại n.

2 tháng 12 2019

Mình quên, là số nguyên tố mới đúng

26+211+2n=64+2048+2n

=2112+2n là số chính phương

2112 chia hết cho 3=>2n chia 3 dư 1

=>n lẻ

đến đó thì tịt

8 tháng 10 2015

Ta có:

Giả sử 2n+28+211=a2<=>2n=a2-28-211=a2-2034=a2-482=(a+48)(a-48)

Như vậy 2n=(a+48)(a-48), giả sử n = p+q (p>q), khi đó:

2p+q=(a+48)(a-48)<=>2p.2q=(a+48)(a-48)=>2p=a+48, 2q=a-48=>2p-2q=96<=>2q(2p-q-1)=25.3 suy ra: 2q=25 và 2p-q-1=3=>q=5 và p=7. Khi đó n = p+q=12

19 tháng 10 2019

n^2+23=x^2 <=>23 = x^2-n^2=(x-n)(x+n). Đến đây bạn lập bảng xét gtri là dc nhé

1 tháng 10 2016

Đặt \(n^2+n+6=m^2\left(m\in N\right)\Rightarrow4n^2+4n+24=4m^2\)

\(\Rightarrow\left(4n^2+1\right)^2+24=4m^2\Leftrightarrow4m^2-\left(4n^2+1\right)^2=24\)

\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=24\)

Xét thấy 2m+2n+1>2m-2n-1>0 và chúng là những số lẻ , nên ta có thể viết 

\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=1.24=2.12=6.4=3.8\)

Suy ra n có thể có giá trị sau:2:

1 tháng 10 2016

Đặt \(n^2+n+6=m^2\left(m\in N\right)\Rightarrow4n^2+4n+24=4m^2\)

\(\Rightarrow\left(2n\right)^2+2.2.n+1+23=4m^2\Leftrightarrow\left(4n^2+1\right)^2+23=4m^2\)

\(4m^2-\left(4n^2+1\right)^2=23\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=23\)

Xét thấy 2m+2n+1>2m-2n-1>0 và chúng là những số lẻ nên ta có thể viết 

\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=1.23\)

Suy ra n có thể có giá trị là 5