K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2017

Bật máy tính lên rồi tính đi

27 tháng 1 2017

32=2^5=>phần thập phân nếu có không quá 6 chữ số, 2014^2013 >6 cái này bạn cm=>đáp số =0

26 tháng 10 2015

Số khủng bố . Math ERROR

12 tháng 12 2015

mk mới có lớp 6 ak nhìn ko hiểu gì cả

28 tháng 7 2016

* Cách 1: 

\(\sqrt{1^2+2013^2+\frac{2013^2}{2014^2}}\)

\(=\sqrt{2013^2.\left(1+\frac{1}{2013^2}+\frac{1}{2014^2}\right)}\)

\(=2013.\left(1+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(=2013+1-\frac{2013}{2014}\)

\(=2014-\frac{2013}{2014}\)

* Cách 2:

\(\sqrt{1^2+2013^2+\frac{2013^2}{2014^2}}\)

\(=\sqrt{\left(1+2013\right)^2-2.2013+\frac{2013^2}{2014^2}}\)

\(=\sqrt{2014^2-2.2013+\left(\frac{2013}{2014}\right)^2}\)

\(=\sqrt{\left(2014-\frac{2013}{2014}\right)^2}\)

\(=2014-\frac{2013}{2014}\)

Từ 2 cách trên ta suy ra:

\(\sqrt{1^2+2013^2+\frac{2013^2}{2014^2}}+\frac{2013}{2014}\)

\(=2014-\frac{2013}{2014}+\frac{2013}{2014}\)

\(=2014\)

Theo đề bài trên, ta có thể suy ra công thức tổng quát như sau:

\(\sqrt{1^2+x^2+\frac{x^2}{\left(x+1\right)^2}}+\frac{x}{x+1}\)

(Chúc bạn học tốt và nhớ k cho mình với nhá!)

25 tháng 7 2016

cái này trong sách vũ hữu bình đó bạn

12 tháng 11 2017

Bn Trùm Trường bn làm theo bài mẫu này nha!

Ví dụ 1: Chữ số thập phân thứ 2001 sau dấu phẩy là chữ số nào khi ta chia 10 cho 23?

HD: Dùng máy tính như sau:
+ Lấy 10 chia 23 ta được 10/23 = 0.434782608… (9 số thập phân đầu tiên là 434782608)
Khi đó (10 – 0.434782608 x 23) x 10^9 = 16
+ Lấy 16 chia cho 23, ta được 16/23 = 0.695652173… ( 9 chữ số thập phân tiếp theo là 695652173). Khi đó (16 – 0.695652173 x 23) x 10^9 = 21
+ Lấy 21 chia 23 ta được 21/23 = 0.913043478… ( 9 chữ số thập phân tiếp theo là 913043478).
Vậy 10/23 = 0,(434782608 695652173 9130) ( tuần hoàn đơn chu kì có 22 chữ số)
Ta có: 2001 _= 21 (mod 22)
Vậy chữ số thập phân thứ 2001 là chữ số thập phân thứ 21 của chu kì tuần hoàn, tức là chữ số 3.

25 tháng 8 2017

Ta cần chứng minh:

\(\frac{2014}{\sqrt{2013}}+\frac{2013}{\sqrt{2014}}>\sqrt{2013}+\sqrt{2014}\)

\(\Leftrightarrow\frac{\sqrt{2013^3}+\sqrt{2014^3}}{\sqrt{2013}.\sqrt{2014}}>\sqrt{2013}+\sqrt{2014}\)

\(\Leftrightarrow\frac{\left(\sqrt{2013}+\sqrt{2014}\right)\left(2013-\sqrt{2013}.\sqrt{2014}+2014\right)}{\sqrt{2013}.\sqrt{2014}}>\sqrt{2013}+\sqrt{2014}\)

\(\Leftrightarrow\frac{2013-\sqrt{2013}.\sqrt{2014}+2014}{\sqrt{2013}.\sqrt{2014}}>1\)

\(\Leftrightarrow2013-2\sqrt{2013}.\sqrt{2014}+2014>0\)

\(\Leftrightarrow\left(\sqrt{2013}-\sqrt{2014}\right)^2>0\)đúng