K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2022

Có: \(3^{24}=3^4.3^4.3^4.3^4.3^4.3^4\)

\(\Rightarrow3^{24}=81.81.81.....81\)

\(\Rightarrow3^{24}=\overline{...1}\)

\(\Rightarrow B=\overline{...1}-2022^0=\overline{...1}-1=\overline{...0}\)

12 tháng 8 2022

số tận cùng của b là 9

 

8 tháng 10 2015

​NÀY MÀ LÀ TOÁN 6 A

5 tháng 8 2023

Số tự nhiên n thỏa mãn \(n^k\left(k\inℕ^∗\right)\) có tận cùng là 9 khi và chỉ khi \(n\) có chữ số tận cùng là 3, 7 hoặc 9. 

 TH1: Nếu \(n\) có chữ số tận cùng là \(3\) thì ta có nhận xét là \(n^{4k}\) có chữ số tận cùng là 1 với mọi số tự nhiên \(k\). Thật vậy, với \(k=0\) thì \(n^0=1\) có tận cùng là 9. Giả sử khẳng định đúng đến \(k=l\). Với \(k=l+1\) thì \(n^{4\left(l+1\right)}=n^{4l+4}=n^4.n^{4l}=\overline{A1}.\overline{B1}\) có chữ số tận cùng là 1. Vậy khẳng định được chứng minh. Do đó, \(n^{9012}=n^{4.2253}\) có chữ số tận cùng là 1, không thỏa ycbt.

 TH2: \(n\) có chữ số tận cùng là 7 thì làm tương tự với TH1, \(n^{4k}\) luôn có chữ số tận cùng là 7 nên không thỏa ycbt.

 TH3: \(n\) có chữ số tận cùng là 9 thì \(n^{2k}\) luôn có chữ số tận cùng là 1. Như vậy, không thể có số tự nhiên \(n\) nào thỏa mãn ycbt.

22 tháng 10

tính tổng P

P=6+6^1+6^2+......+6^50

chữ số tận cùng là 9

12 tháng 5 2022

Ta có : `3^24=3^4.6=(3^4)^6=81^6=(... .1)`

`=>3^24-2022^0=(... .1)-1=(...0)`

`=>B`có tận cùng là `0`

12 tháng 5 2022

B=\(3^{24}-1\)

Ta có: 3 với số mũ chẵn luôn luôn có chữ số tận cùng là 1 (không tin cứ thử :) 

=> \(3^{24}=\left(.......1\right)\)

\(\left(......1\right)-1=\left(.........0\right)\)

B có chữ số tận cùng là 0

20 tháng 6 2018

4 mũ chẵn có tận cùng bằng 6
nen 2014
2014có tận cùng bằng 6

29 tháng 12 2016

S = 30+32+34+...+32008

9S = 32+34+36+...+32010

9S - S = (32+34+36+...+32010) - (30+32+34+...+32008)

8S = 32010 - 30

8S = 32010 - 1

S = (32010 - 1) : 8

\(=\left(3^{2008}.3^2-1\right):8\)

\(=\left[\left(3^4\right)^{502}.9-1\right]:8\)

\(=\left[\overline{\left(...1\right)}^{502}.9-1\right]:8\)

\(=\left[\overline{\left(...1\right)}.9-1\right]:8\)

\(=\left[\overline{\left(...9\right)}-1\right]:8\)

\(=\overline{\left(...8\right)}:8\)

\(=\overline{...1}\)

Vậy S có c/s tận cùng là 1

29 tháng 12 2016

Tính tổng S

\(S=3^0+3^1+...+3^{2007}+3^{2008}=\frac{3^{2009}-1}{2}\)(1)

(1)cái này bạn chưa hiểu mình Hướng giải chi tiết Bài tính Tổng dãy số

\(3^{2009}=3.9^{2008}=3.9^{2.1004}=3.81^{1004}\Rightarrow\)Tận cùng là 3

\(\Rightarrow3^{2009}-1\)có tận cùng =2

\(\frac{3^{2009}-1}{2}\) tận cùng là 1 hoặc 6

S không chia hết cho 2=> S tận cùng là 1

-------------Cách khác -----ghép số hạng

Để ý có 3^2+3^0=9+1=10

=> ghép cắp từ lớn xuống

3^2008+3^2006=3^2006(3^2+1)=10.3^2006

3^2007+3^2005=3^2005(3^2+1)=10+3^2006

Cuối cùng còn con 3^0 lẻ 

3^0=1=>S có tận cùng 1