
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{p+1}{2}\)là số chính phương nên \(p+1\)phải chia hết cho 4.
Tương tự \(\frac{p^2+1}{2}\)là số chính phương nên \(p^2+1\)chia hết cho 4.
Do đó cả p và p2 đều chia 4 dư 3.
Đặt \(p=4k+3\)\(\left(k\in N\right)\)
\(\Rightarrow p^2=\left(4k+3\right)^2=16k^2+24k+9=4\left(4k^2+6k+2\right)+1\)chia 4 dư 1.
Do đó không thể tồn tại p để cả p và p2 chai cho 4 có cùng 1 số dư. Do đó không có p thỏa mãn.

Bài này đâu phải toán lớp 3 . Mình nghĩ bài này từ lớp 8 - 9 mới học cơ!

Vì \(\frac{1}{4}=\frac{1x4}{5x4}=\frac{4}{20}\)và \(\frac{2}{5}=\frac{2x4}{5x4}=\frac{8}{20}\)
Vì 4 < 5,6,7 < 8
=> Vậy phân số đó là : \(\frac{5}{20},\frac{6}{20},\frac{7}{20}\)
Nhưng vì phân số đó phải tối giản nên phân số cần tìm là : \(\frac{7}{20}\)
\(\frac{1}{4}< \frac{a}{b}< \frac{2}{5}\)
\(\Leftrightarrow\frac{5}{20}< \frac{a}{b}< \frac{8}{20}\)
\(\Rightarrow\frac{a}{b}=\frac{6}{20};\frac{7}{20}\)
\(\Rightarrow\frac{a}{b}=\frac{3}{10};\frac{7}{20}\)

Giải :
Nếu thêm 48 đơn vị vào số hạng thứ nhất thì tổng cũng thêm 48 đơn vị .
Vậy tổng mới là :
152 + 48 = 200
Số hạng thứ hai là :
200 : 4 = 50
Số hạng thứ nhất là :
152 - 50 = 102
Đáp số : Số thứ nhất : 102
Số thứ hai : 50
Nếu sai thì cho mik xin lỗi nka
HkT~
#Wind

Tổng 2 số là : 21 x 2 = 42.Ta có : 2/3 số thứ I = 1/2 số thứ II => Số thứ I = 1/2 số thứ II : 2/3 = 3/4 số thứ II
Vậy số thứ nhất là : 42 : (3+4) x 3 = 18 ; Số thứ hai là : 42 - 18 = 24
câu hỏi này khiến người ta hack não vãi