
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có : 2xy - 5 = 2x2 + y
\(\implies\) 2xy - 2x2 - y = 5
\(\implies\) ( 2xy - y ) - 2x2 = 5
\(\implies\) y ( 2x - 1 ) - 2x2 = 5
\(\implies\) 2y ( 2x - 1 ) - 4x2 = 10
\(\implies\) 2y ( 2x -1 ) - ( 2x )2 = 10
\(\implies\) 2y ( 2x - 1 ) - ( 2x )2 + 1 = 11
\(\implies\) 2y ( 2x - 1 ) - [ ( 2x )2 - 1 ] = 11
\(\implies\) 2y ( 2x - 1 ) - ( 2x - 1 ) ( 2x + 1 ) =11
\(\implies\) ( 2x - 1 ) [ 2y - ( 2x + 1 ) ] = 11
\(\implies\) 2x - 1 ; 2y - ( 2x + 1 ) \(\in\) Ư ( 11 ) = { 1 ; -1 ; 11 ; -11 }
Ta có bảng sau :
2x - 1 | 1 | -1 | 11 | -11 |
x | 1 | 0 | 6 | -5 |
2y - ( 2x + 1 ) | 11 | -11 | 1 | -1 |
y | 7 | -5 | 7 | -5 |
Vậy ( x ; y ) \(\in\) { (1 ; 7 ), ( 0 ; -5 ) , ( 6 ; 7 ) , (-5 ; -5 ) }

Ta có : x+2xy-4y=14
x+2y.(x-2)=14
(x-2)+2y.(x-2)+2=14
(x-2).(2y+1)=14-2
(x-2).(2y+1)=12
Do 2y+1 là số lẻ nên 2y+1 là Ước lẻ của 12
Các Ước lẻ của 12 là -3;-1;1;3
Bạn làm tiếp nhé

a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)

c) Tìm các số nguyên x,y thỏa mãn
*\(2xy+6x-y=10\)
\(\Leftrightarrow\left(2xy+6x\right)-y-3=10-3=7\)
\(\Leftrightarrow2x\left(y+3\right)-\left(y+3\right)=7\)
\(\Leftrightarrow\left(y+3\right)\left(2x-1\right)=7\)
Lập bảng xét ước nữa là xong.
* \(xy+4x-3y=1\Leftrightarrow\left(xy+4x\right)-3y-12=1-12=-11\)
\(\Leftrightarrow x\left(y+4\right)-\left(3y+12\right)=-11\)
\(\Leftrightarrow x\left(y+4\right)-3\left(y+4\right)=-11\)
\(\Leftrightarrow\left(x-3\right)\left(y+4\right)=-11\)
Lập bảng xét ước nữa là xong.
Mới nhìn vào thấy bài toán hay hay lạ kì.
Thêm một vào bớt một ra
Tức thì bài toán trở nên dễ dàng:
\(\frac{x}{50}-\frac{x-1}{51}=\frac{x+2}{48}-\frac{x-3}{53}\)
\(\Leftrightarrow\frac{x}{50}+1-\frac{x-1}{51}-1=\frac{x+2}{48}+1-\frac{x-3}{53}-1\)
\(\Leftrightarrow\left(\frac{x}{50}+1\right)-\left(\frac{x-1}{51}+1\right)=\left(\frac{x+2}{48}+1\right)-\left(\frac{x-3}{53}+1\right)\)
\(\Leftrightarrow\frac{x+50}{50}-\frac{x+50}{51}=\frac{x+50}{48}-\frac{x+50}{53}\)
\(\Leftrightarrow\frac{x+50}{50}-\frac{x+50}{51}-\frac{x+50}{48}+\frac{x+50}{53}=0\)
\(\Leftrightarrow\left(x+50\right)\left(\frac{1}{50}-\frac{1}{51}-\frac{1}{48}+\frac{1}{53}\right)=0\)
Dễ thấy \(\left(\frac{1}{50}-\frac{1}{51}-\frac{1}{48}+\frac{1}{53}\right)\ne0\)
Do đó x + 50 = 0 hay x = -50


x-y+2xy=3
x(2y+1)-y=3
2x(2y+1)-2y=6
2x(2y+1)-2y-1=5
2x(2y+1)-(2y+1)=5
(2y+1)(2x-1)=5
Đến đây thì dễ rồi, bạn tự làm nốt nha

\(x-2xy-1=x\left(5-x\right)-\left(y+20\right)\)
\(\Leftrightarrow x-2xy-1=5x-x^2-y-20\)
\(\Leftrightarrow x^2-4x+19=2xy-y\)
\(\Leftrightarrow x^2-4x+19=y\left(2x-1\right)\)
\(\Leftrightarrow y=\dfrac{x^2-4x+19}{2x-1}\) (1)
\(\Leftrightarrow4y=\dfrac{4x^2-16x+76}{2x-1}\)
\(\Leftrightarrow4y=2x-7+\dfrac{69}{2x-1}\)
Do x;y nguyên nên \(4y\) và \(2x-7\) nguyên
\(\Rightarrow\dfrac{69}{2x-1}\in Z\)
\(\Rightarrow2x-1\inƯ\left(69\right)=\left\{-69;-23;-3;-1;1;3;23;69\right\}\)
\(\Rightarrow x\in\left\{-34;-11;-1;0;1;2;12;35\right\}\)
Thế lần lượt vào (1) được tương ứng \(y\in\left\{-19;-8;-8;-19;-19;16;5;5;16\right\}\)
Vậy ...