K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2016

a) \(xy+x+2y=5\Leftrightarrow xy+x+2y+2=7\Leftrightarrow\left(y+1\right)\left(x+2\right)=7\)

Vì x,y là số tự nhiên nên \(x,y\in N\)\(x,y\ge0\)\(\Rightarrow y+1\ge1;x+2\ge2\)

Từ đó ta có : 

\(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\) 

b) \(xy+2x+2y=-16\Leftrightarrow xy+2y+2x+4=-12\Leftrightarrow\left(y+2\right)\left(x+2\right)=-12\)

Lần lượt xét từng trường hợp , ta được : 

(x;y) = (-14; -1) ; (-8 ; 0) ; (-6 ; 1) ; (-5 ;2) ; (-4 ;4)

23 tháng 5 2016

a) \(\left(x+2\right)\left(y+1\right)=7=1.7=7.1\)

Hoặc \(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\in N\)

Hoặc\(\hept{\begin{cases}x+2=1\\y+1=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\notin N\\y=6\end{cases}}\)

Vậy \(\left(x;y\right)=\left(5;0\right)\)

b)\(\left(x+2\right)\left(y+2\right)=-1.12=-12.1=-2.6=-6.2=-3.4=-4.3\)

tương tự giải 6 TH là được

I don't now

mik ko biết 

sorry 

......................

25 tháng 7 2018

1)\(4n+3⋮n-2\)

\(\Leftrightarrow4n+3=4\left(n-2\right)+11\)

\(\Rightarrow4\left(n-2\right)⋮n-2\)\(\Rightarrow n-2⋮n-2\)

\(\Rightarrow11⋮n-2\)

\(\Rightarrow n-2\in\left\{\pm1;\pm11\right\}\)

\(\Rightarrow n\in\left\{3;1;13;-9\right\}\)

2)\(xy+5x+y+10=0\)

\(\Leftrightarrow x\left(y+5\right)+y+5+5=0\)

\(\Leftrightarrow x\left(y+5\right)+\left(y+5\right)=-5\)

\(\Leftrightarrow\left(x+1\right).\left(y+5\right)=-5\)

  x+1     -1      -5   

   1   

   5   
  y+5   5      1

  -5   

  -1
  x  -2  -6   0

   4

  y

  0  -4 -10 -6

3)

4 tháng 2 2022

Tham khảo

29 tháng 12 2021

1: \(\Leftrightarrow n+3\in\left\{1;-1;19;-19\right\}\)

hay \(n\in\left\{-2;-4;16;-22\right\}\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2021

1.

$4n-7\vdots n+3$
$\Rightarrow 4(n+3)-19\vdots n+3$

$\Rightarrow 19\vdots n+3$

$\Rightarrow n+3\in\left\{\pm 1; \pm 19\right\}$

$\Rightarrow n\in\left\{-2; -4; 16; -22\right\}$

AH
Akai Haruma
Giáo viên
22 tháng 11 2023

Lời giải:

$x^2-y+2x-xy=y-3$

$\Rightarrow (x^2+2x)-(2y+xy)=-3$

$\Rightarrow x(x+2)-y(x+2)=-3$

$\Rightarrow (x+2)(x-y)=-3$
Do $x,y$ là số nguyên nên $x+2, x-y$ nguyên. Do đó ta có các TH sau:

TH1: $x+2=1; x-y=-3\Rightarrow x=-1; y=2$

TH2: $x+2=-1; x-y=3\Rightarrow x=-3; y=6$

TH3: $x+2=3; x-y=-1\Rightarrow x=1; y=2$

TH4: $x+2=-3; x-y=1\Rightarrow x=-5; y=-6$