Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trl:
Ta có :
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{2y}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1-2y}{8}\)
\(\Rightarrow5.8=\left(1-2y\right).x\)
\(\Rightarrow40=\left(1-2y\right).x\)
Ta sẽ thấy 1 - 2y là ước lẻ 40 nên x là ước chẵn của 40
Ta có bảng sau
x | 40 | -40 | 8 | -8 |
1 - 2y | 1 | -1 | 5 | -5 |
y | 0 | 1 | -2 | 3 |
Hc tốt
1) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
\(\Leftrightarrow\frac{x+y+z}{xyz}=1\)
\(\Leftrightarrow x+y+z=xyz\)
Không mất tính tổng quát, giả sử: \(x\le y\le z\)
Lúc đó: \(x+y+z\le3z\)
\(\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)
\(\Rightarrow xy\in\left\{1;2;3\right\}\)
* Nếu xy = 1 thì x = y = 1\(\left(x,y\inℤ\right)\). \(\Rightarrow2+z=z\)(vô lí)
* Nếu xy = 2 thì x = 1, y = 2 (Do \(x\le y\),\(x,y\inℤ\))\(\Rightarrow3+z=2z\Leftrightarrow z=3\)
* Nếu xy = 3 thì x = 1, y = 3(Do \(x\le y\),\(x,y\inℤ\)) \(\Rightarrow4+z=3z\Leftrightarrow z=2\)
Vậy x,y,z là các hoán vị của (1,2,3)
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1-2y}{8}\)
\(\Leftrightarrow40=x\left(1-2y\right)\)
Đến đây bạn lập bảng ha !
b) \(\left|5x-3\right|-x=7\)
\(\Rightarrow\left|5x-3\right|=7+x\)
\(\Rightarrow\orbr{\begin{cases}5x-3=7+x\\5x-3=-\left(7+x\right)\end{cases}\Rightarrow\orbr{\begin{cases}5x-3=7+x\\5x-3=-7-x\end{cases}\Rightarrow}\orbr{\begin{cases}5x-x=7+3\\5x+x=-7+3\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}4x=10\\6x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{2}{3}\end{cases}}}\)
Vậy ....................
Bạn ơi !!! ý A tham khảo tại link này nè :
https://h.vn/hoi-dap/question/394208.html
~ Học tốt ~
<=> \(\frac{20+xy}{4x}=\frac{1}{8}\)
<=> \(160+8xy=4x\)
<=> 40 + 2xy = x
<=> x(1-2y) = 40
Co x, y nguyên nên 1-2y cũng nguyên
Đến đây bạn xét các TH nhé
VD x = 2, 1 - 2y = 20 ; x = 1, 1 - 2y =40. x= -2, y = -20 vv....
Theo đề bài suy ra \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1-2y}{8}\)
\(\Leftrightarrow x=\frac{8}{1-2y}.5\)
Dễ thấy 1-2y là số lẻ nên ƯCLN(8;1-2y) = 1 \(\Rightarrow\frac{x}{8}=\frac{5}{1-2y}\)
; mà x, y nguyên khi 1-2y phải là ước của 5 <=> 1 - 2y \(\in\) {-1; 1; -5; 5}
- Xét 1-2y = -1 => y = 1 => x = -40
- Xét 1-2y = 1 => y = 0 => x = 40
- Xét 1-2y = -5 => y = 3 => x = -8
- Xét 1-2y = 5 => y = -2 => x = 8
Vậy có 4 cặp (x,y) nguyên (-40;1) ; (40;0) ; (-8;-5) ; (8;5)
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}\)
=>x(1-2y)=5.8=40
do 1-2y là 1 số lẻ và là ước lẻ của 40
nên 1-2y ={-1;1;-5;5}
+)1-2y=-1 =>y=1
=>x=-40
+1-2y=1=>y=0
=>x=40
+)1-2y=-5 =>y=3
=>x=-8
+)1-2y=5=>y=-2
=>x=8
Vậy có 4 cặp (x;y) thỏa mãn bài toán là:...
^...^ ^_^
Ta có:
\(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\Rightarrow1-2y\) là ước lẻ của 40
Đáp số:
x | 40 | -40 | 8 | -8 |
y | 0 | 1 | -2 | 3 |
a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
=> \(\frac{5}{x}=\frac{1-2y}{8}\)
=> 5.8 = x(1 - 2y)
=> x(1 - 2y) = 40
=> x; (1 - 2y) \(\in\)Ư(40) = {1; -1; 2; -2; 4; -4; 5; -5; 8; -8; 10; -10; 20; -20; 40; -40}
Vì 1 - 2y là số lẽ => 1 - 2y \(\in\){1; -1; 5; -5}
Lập bảng :
1 - 2y | 1 | -1 | 5 | -5 |
x | 40 | -40 | 8 | -8 |
y | 0 | 1 | -2 | 3 |
Vậy ....
\(A^2=\frac{x+1}{x-3}=1+\frac{4}{x-3}\).
Để A nguyên thì A2 nguyên tức là \(\frac{4}{x-3}\) nguyên
Nên \(x-3\inƯ\left(4\right)=\left\{\pm1;\pm4\right\}\)
\(\Rightarrow x\in\left\{-1;2;4;7\right\}\)
Thay lần lượt các giá trị x vào xem với giá trị nào của x thì A2 là số chính phương là xong!
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
<=> \(\frac{20+xy}{4x}=\frac{1}{8}\)
<=> 8(20 + xy) = 4x
<=> 2(20 + xy) = x
<=> 40 + 2xy = x
<=> x(1 - 2y) = 40
Lập bảng xét các trường hợp
x | 1 | 40 | 2 | 20 | 5 | 8 | 10 | 4 | -10 | -4 | -5 | -8 | -2 | -20 | -1 | -40 |
1 - 2y | 40 | 1 | 20 | 2 | 8 | 5 | 4 | 10 | -4 | -10 | -8 | -5 | -20 | -2 | -40 | -1 |
y | -39/2 (loại) | 0 | -19/2(loại) | -1/2(loại) | -7/2 (loại) | -2 | -3/2 (loại) | -9/2(loại) | 5/2(loại) | 11/2(loại) | 9/2(loại) | 3 | 21/2(loại) | 3/2(loại) | 41/2(loại) | 1 |
Vậy các cặp (x;y) tìm được là (40;0) ; (8;-2) ; (-8 ; 3) ; (-40 ; 1)
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}=>\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=>\frac{5}{x}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}\)
=>x(1-2y)=5.8=40
do 1-2y là 1 số lẻ và là ước lẻ của 40
nên 1-2y ={-1;1;-5;5}
+)1-2y=-1 =>y=1
=>x=-40
+1-2y=1=>y=0
=>x=4-
+)1-2y=-5 =>y=3
=>x=-8
+)1-2y=5=>y=-2
=>x=8
Vậy có 4 cặp (x;y) thỏa mãn bài toán là:...
nhớ tick