Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Tìm x, y nguyên biết :
a) 4x + 2xy + y = 7
=> 2.x(y-2)+(y-2)=5
=> ( y-2)(2x+1)= 5
Ta có bảng sau:
2x+1 | -5 | -1 | 1 | 5 |
y-2 | -1 | -5 | 5 | 1 |
x | -3 | -1 | 0 | 2 |
y | 1 | -3 | 7 | 3 |
Điều kiện: t/m
Vậy:....
phần b và c tương tự
( x - 7 ) ( 2y + 3 ) = 32
<=> ( 2x - 14 ) y + 3x - 21 = 32
<=> ( 2x - 14) y + 3x - 32 - 21 = 0
<=> ( 2x - 14 ) y + 3x - 53 = 0
<=> ( 2x - 7) = 0
<=> 2x=2.7
<=> x = 7
<=> 2y + 3 = 0
<=> 2y = -3
<=> y = -1,5
Có \(2xy+3x-2y=20\)
\(\Rightarrow\left(2xy-2y\right)+3x=20\)
\(\Rightarrow2y\left(x-1\right)+3x=20\)
\(\Rightarrow2y\left(x-1\right)+3x-3=20-3\)
\(\Rightarrow2y\left(x-1\right)+3\left(x-1\right)=17\)
\(\Rightarrow\left(2y+3\right)\left(x-1\right)=17\)
\(\Rightarrow\hept{\begin{cases}2y+3\inƯ\left(17\right)\\x-1\inƯ\left(17\right)\end{cases}}\)
Ta có bảng giá trị sau:
2y+3 | 1 | 17 | -17 | -1 |
x-1 | 17 | 1 | -1 | -17 |
x | 18 | 2 | 0 | -16 |
y | -1 | 7 | -10 | -2 |
Vậy các cặp (x;y) thỏa mãn là (18;-1),(2;7),(0;-10);(-16;-2)
<=> x(2y-1) + 2y = 8
<=> x(2y-1) + 2y-1 = 7 (trừ 1 ở hai vế)
<=> (2y-1)(x+1) = 7
- Trường hợp 1: 2y-1=7 <=> y=4 (thỏa mãn y thuộc Z)
x+1=1 <=> x=0 (thỏa mãn x thuộc Z)
- Trường hợp 2: 2y-1=1 <=> y=1 (thỏa mãn y thuộc Z)
x+1=7 <=> x=6 (thỏa mãn x thuộc Z)
Vậy các bộ số (x,y) thỏa mãn yêu cầu bài toán là (0,4) và (6,1).
\(2xy+x+2y+4=2\)
=> \(x\left(2y+1\right)+\left(2y+1\right)=-1\)
=> \(\left(x+1\right)\left(2y+1\right)=-1\)
Ta có bảng:
x+1 | 1 | -1 |
2y+1 | -1 | 1 |
x | 0 | -2 |
2y | -2 | 0 |
y | -1 | 0 |
Vậy các cặp số (x;y) tmđb là (0;-1);(-2;0)
Mình nghĩ là đề : xy sẽ hay hơn
\(xy+x+2y+4=2\)
\(\Leftrightarrow xy+x+2y+4-2=0\)
\(\Leftrightarrow xy+x+2y+2=0\)
\(\Leftrightarrow x\left(y+1\right)+2\left(y+1\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
\(2xy-5x-2y=12\)
\(\Leftrightarrow x\left(2y-5\right)-2y+5=17\)
\(\Leftrightarrow\left(x-1\right)\left(2y-5\right)=17\)
Vì \(x,y\)nguyên nên \(x-1,2y-5\)là các ước của \(17\).
Ta có bảng giá trị:
x-1 | -17 | -1 | 1 | 17 |
2y-5 | -1 | -17 | 17 | 1 |
x | -16 | 0 | 2 | 18 |
y | 2 | -6 | 11 | 3 |
\(2xy-3x+2y=8\)
\(\Leftrightarrow\left(2xy-3x\right)+\left(2y-3\right)=5\)
\(\Leftrightarrow x\left(2y-3\right)+\left(2y-3\right)=5\)
\(\Leftrightarrow\left(x+1\right)\left(2y-3\right)=5\)
Bảng giá trị:
Vậy pt có 4 cặp nghiệm nguyên (x;y)=(-6;1);(-2;-1);(0;4);(4;2)