Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(x^2 \ge 0\) với mọi `x`
\(=>x^{2}+2021 \ge 2021\) với mọi `x`
Hay \(A \ge 2021\) với mọi `x`
Dấu "`=`" xảy ra `<=>x=0`
\(x^{2022}\ge0\Leftrightarrow A=2021-x^{2022}\le2021\\ A_{max}=2021\Leftrightarrow x=0\)
\(A=\left(x+2\right)^2-5\ge-5\)
Dấu ''='' xảy ra <=> x = -2
Vậy GTNN A là -5 <=> x = -2
\(A=\left(x+2\right)^2-5\)
Vì \(\left(x+2\right)^2\ge0\forall x\)\(\Rightarrow\left(x+2\right)^2-5\ge-5\forall x\)
\(\Rightarrow A\ge-5\)
Dấu " = " xảy ra \(\Leftrightarrow x+2=0\)\(\Leftrightarrow x=-2\)
Vậy \(minA=-5\)\(\Leftrightarrow x=-2\)
Bài 1:
a, Ta có: (x - 1)2 \(\ge\)0 với mọi x
=> A = (x - 1)2 + 2016 \(\ge\)2016
Dấu "=" xảy ra <=> (x-1)2 = 0 <=> x = 1
Vậy GTNN của A = 2016 tại x = 1
b, Ta có: |x + 4| \(\ge\)0 với mọi x
=> B = |x + 4| + 2017 \(\ge\)2017
Dấu "=" xảy ra <=> |x + 4| = 0 <=> x = -4
Vây GTNN của B = 2017 tại x = -4
Bài 2:
a, Ta có: (x + 1)2016 \(\ge\)0 với mọi x
=> P = 2010 - (x + 1)2016 \(\ge\)2010
Dấu "=" xảy ra <=> (x + 1)2016 = 0 <=> x = -1
Vậy GTLN của P = 2010 tại x = -1
b, Ta có: |3 - x| \(\ge\)0 với mọi x
=> Q = 2010 - |3 - x| \(\ge\)2010
Dấu "=" xảy ra <=> |3 - x| = 0 <=> x = 3
Vậy GTLN của Q = 2010 tại x = 3