K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

phải không ta;-;

16 tháng 12 2022

Vì \(x^2 \ge 0\) với mọi `x`

  \(=>x^{2}+2021 \ge 2021\) với mọi `x`

 Hay \(A \ge 2021\) với mọi `x`

Dấu "`=`" xảy ra `<=>x=0`

16 tháng 12 2022

chắc là x=0

26 tháng 8 2021

kakashi hahahaha

12 tháng 12 2021

\(x^{2022}\ge0\Leftrightarrow A=2021-x^{2022}\le2021\\ A_{max}=2021\Leftrightarrow x=0\)

17 tháng 1 2021

\(A=\left(x+2\right)^2-5\ge-5\)

Dấu ''='' xảy ra <=> x = -2 

Vậy GTNN A là -5 <=> x = -2

17 tháng 1 2021

\(A=\left(x+2\right)^2-5\)

Vì \(\left(x+2\right)^2\ge0\forall x\)\(\Rightarrow\left(x+2\right)^2-5\ge-5\forall x\)

\(\Rightarrow A\ge-5\)

Dấu " = " xảy ra \(\Leftrightarrow x+2=0\)\(\Leftrightarrow x=-2\)

Vậy \(minA=-5\)\(\Leftrightarrow x=-2\)

2 tháng 5 2017

Bài 1:

a, Ta có: (x - 1)2 \(\ge\)0 với mọi x

=> A = (x - 1)2 + 2016 \(\ge\)2016 

Dấu "=" xảy ra <=> (x-1)2 = 0 <=> x = 1

Vậy GTNN của A = 2016 tại x = 1

b, Ta có: |x + 4| \(\ge\)0 với mọi x

=> B = |x + 4| + 2017 \(\ge\)2017

Dấu "=" xảy ra <=> |x + 4| = 0 <=> x = -4

Vây GTNN của B = 2017 tại x = -4

Bài 2:

a, Ta có: (x + 1)2016 \(\ge\)0 với mọi x

=> P = 2010 - (x + 1)2016 \(\ge\)2010

Dấu "=" xảy ra <=> (x + 1)2016 = 0 <=> x = -1

Vậy GTLN của P = 2010 tại x = -1

b, Ta có: |3 - x| \(\ge\)0 với mọi x

=> Q = 2010 - |3 - x| \(\ge\)2010

Dấu "=" xảy ra <=> |3 - x| = 0 <=> x = 3

Vậy GTLN của Q = 2010 tại x = 3