K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2022

Rõ ràng 4x > 0 nên x > 0.

Do đó \(x+5+x+4+x+2022< 4x\Leftrightarrow x>2031\).

Suy ra số nguyên x nhỏ nhất cần tìm là 2032.

24 tháng 3 2018

a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.

Giả sử số lẻ đó là x thì ta có

\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)

\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)

\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)

Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm

24 tháng 3 2018

b/ \(9x^2+2=y^2+y\)

\(\Leftrightarrow36x^2+8=4y^2+4y\)

\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)

\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)

DD
21 tháng 7 2021

\(5x-2y=1\)(1)

Có \(\left(5,2\right)=1\)là ước của \(1\)nên phương trình có vô số nghiệm. 

Thấy \(\left(1,2\right)\)là một nghiệm của (1) nên nghiệm tổng quát của (1) là: 

\(\hept{\begin{cases}x=1+\frac{-2}{1}t=1-2t\\y=2+\frac{5}{1}t=2+5t\end{cases}}\left(t\inℤ\right)\)

\(P=3x+5y=3\left(1-2t\right)+5\left(2+5t\right)=13+19t\)

Dễ thấy \(P\)không có giá trị nhỏ nhất do \(t\inℤ\)

Nếu đổi điều kiện là \(x,y\)là các số tự nhiên. 

Ta có: \(\hept{\begin{cases}x=1+\frac{-2}{1}t=1-2t\\y=2+\frac{5}{1}t=2+5t\end{cases}}\left(t\inℤ\right)\)suy ra \(\hept{\begin{cases}1-2t\ge0\\2+5t\ge0\end{cases}}\Leftrightarrow\frac{-2}{5}\le t\le\frac{1}{2}\)suy ra \(t=0\).

Khi đó \(P=3.1+5.2=13\)