K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2016

\(A=\left(x-1\right)^2+2016\)

Vì \(\left(x-1\right)^2\ge0\)

\(=>GTNN\left[\left(x-1\right)^2\right]=0\)

Vậy \(A_{min}=0+2016=2016\)

Để A đạt giá trị nhỏ nhất thì \(\left(x-1\right)^2=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(B=Ix+10I+2016\)

Vì \(Ix+10I\ge0\)

Nên \(GTNN\left(Ix+10I\right)=0\)

Vậy \(B_{min}=0+2016=2016\)

Để B đạt giá trị nhỏ nhất thì \(Ix+10I=0\) 

\(x+10=0\Rightarrow x=-10\)

\(C=\frac{5}{x-2}\)

Khi \(x-2\) càng lớn thì \(C=\frac{5}{x-2}\)càng nhỏ

Mà để C là số nguyên thì \(\left(x-2\right)\in\left\{-5;5\right\}\)

Mà \(\left(-5\right)< 5\)

=> \(GTNN\left(x-2\right)=-5\)

\(\Rightarrow x=\left(-5\right)+2=-3\)

16 tháng 3 2016

C nhỏ nhất <=> x-2 lớn nhất.

Nếu x-2 <0 => C<0.

Nếu x-2 >0 => C >0.

Mà C nhỏ nhất => C <0 => x-2<0 mà x-2 lớn nhất và là số nguyên

=> x-2 = -1

=> x = 1.

Vậy để C đạt giá trih nhỏ nhất thì x = 1 và khi đó C = -5.

28 tháng 3 2021

a) ta thấy (x-1)^2 >/=0

->(x-1)^2 +2008>/= 0

dấu = xảy ra khi và chỉ khi (x-1)^2= 0

<=> x=1

 vậy A có giá trị bằng 2008 khi và chỉ khi x=1

b) Ta có: \(\left|x+4\right|\ge0\forall x\)

\(\Leftrightarrow\left|x+4\right|+1996\ge1996\forall x\)

Dấu '=' xảy ra khi x+4=0

hay x=-4

Vậy: Giá trị nhỏ nhất của biểu thức B=|x+4|+1996 là 1996 khi x=-4

2 tháng 5 2017

Câu 3 dễ mà HUỲNH VĂN HIẾU cậu quy đồng mẫu là 39 rồi so sánh

16 tháng 9 2018

1 Giải :

\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1

Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)

Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}

Lập bảng :

x - 1 1 -1 2 -2 4 -4 8 -8
   x 2 0 3 -1 5 -3 9 -7

Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên

16 tháng 9 2018

Đặt \(A=\frac{3x+7}{x-1}\)

Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)

Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\) 

Ta có bảng sau:

\(x-1\)\(1\)\(-1\)\(2\)\(-2\)\(5\)\(-5\)\(10\)\(-10\)
\(x\)\(2\)\(0\)\(3\)\(-1\)\(6\)\(-4\)\(11\)\(-9\)

Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)