K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2021

a = 2

b = 8

c = 1

d = 7

e = 3

h = 2

2 tháng 8 2022

trả lời như v k ai hiểu đc

\(a,\frac{x-7}{x-11}=\frac{\left(x-11\right)+4}{x-11}=1+\frac{4}{x-11}\)

Để phân số trên là số hữu tỉ âm\(\Rightarrow\frac{4}{x-11}< 0\)

\(\Rightarrow x-11< 0\)

\(\Rightarrow x< 11\)

\(2,\frac{x+2}{x-6}=\frac{x-6+8}{x-6}=1+\frac{8}{x-6}\)

Để phân số trên là số hữu tỉ âm \(\frac{\Rightarrow8}{x-6}< 1\Rightarrow x-6>8\Rightarrow x>14\)

\(3,\frac{x-3}{x+7}=\frac{x+7-10}{x+7}=1-\frac{10}{x+7}\)

Để phân số trên là số hữu tỉ âm\(\Rightarrow\frac{10}{x+7}< 1\Rightarrow x+7>10\Rightarrow x>3\)

28 tháng 6 2023

Bài 11: 

Ta có: \(x=\dfrac{-101}{a+7}\) nguyên khi \(-101⋮a+7\)

Vậy: \(a+7\inƯ\left(101\right)\)

\(Ư\left(101\right)=\left\{101;1;-101;-1\right\}\)

\(a+7\in\left\{101;1;-101;-1\right\}\)

\(\Rightarrow a\in\left\{94;-108;-6;-8\right\}\)

Vậy x sẽ nguyên khi \(a\in\left\{94;-108l-6;-8\right\}\)

Bài 12:

Ta có: \(t=\dfrac{3x+8}{x-5}=\dfrac{3x+15-7}{x-5}=\dfrac{3\left(x+5\right)-7}{x-5}=3+\dfrac{7}{x-5}\)

t nguyên khi \(\dfrac{7}{x+5}\) nguyên tức là \(x-5\inƯ\left(7\right)\) 

\(Ư\left(7\right)=\left\{-7;7;-1;1\right\}\)

\(\Rightarrow x-5\in\left\{-7;7;-1;1\right\}\)

\(\Rightarrow x\in\left\{12;-2;4;6\right\}\)

Vậy t sẽ nguyên khi \(x\in\left\{12;-2;4;6\right\}\)

8 tháng 8 2015

cái này mình chưa học tới nên không biết

8 tháng 8 2015

a) Ta có: \(\frac{x-7}{x-11}=\frac{\left(x-11\right)+4}{x-11}=1+\frac{4}{x-11}\)

Để phân số trên là số hữu tỉ âm.

=>\(\frac{4}{x-11}

17 tháng 9 2023

a)

Gọi x là số cần tìm, ta có:

 \(x+2>0\left(x>0\right)\)

\(\Rightarrow x-4< 0\)

\(\Rightarrow x< 4\)

\(x=\left\{1;2;3\right\}\)

b)

Gọi x là số cần tìm, khi đó:

\(x-2< 0\left(x< 0\right)\)

\(x+4>0\left(\forall x>-4\right)\)

\(\Rightarrow x=\left(-3;-2;-1\right)\)

Để x là số nguyên thì -11\(⋮\)a+7

<=> a+7\(\in\){1,-11,-1,11}

<=> a\(\in\){-6,-18,-8,4}

17 tháng 7 2018

\(x=\frac{-11}{a+7}\)

Để x nguyên \(\Rightarrow-11⋮a+7\)

\(a+7\in\left(-11;1;11;-1\right)\)

\(a\in\left(-18;-6;4;-8\right)\)