Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để 3x-4\(⋮\)x-1
\(\Rightarrow3\left(x-1\right)-1⋮x-1\)
\(\Rightarrow-1⋮x-1\)
\(\Rightarrow x-1\in\left\{1;-1\right\}\)
\(\Rightarrow x\in\left\{2;0\right\}\)
x^3+3x-5 chia hết cho x^2+2
=>x^3+2x+x-5 chia hết cho x^2+2
=>x-5 chia hết cho x^2+2
=>x^2-25 chia hết cho x^2+2
=>x^2+2-27 chia hết cho x^2+2
=>x^2+2 thuộc Ư(-27)
=>x^2+2 thuộc {3;9;27}
=>\(x\in\left\{1;-1;5;-5\right\}\)
Do \(3x-1⋮y\) và \(3y+1⋮x\)nên \(\left(3x-1\right)\left(3y+1\right)⋮xy\)
\(\Rightarrow9xy+3x+3y+1⋮xy\)
Mà \(9xy⋮xy\)
\(\Rightarrow\frac{3x}{y}+3+y\frac{1}{y}⋮x\)
Do vai trò của x , y như nhau , nên giả sử
\(\Rightarrow\frac{x}{y}\le1\)
\(\Rightarrow\frac{3x}{y}+3+\frac{1}{y}< 7\)
\(\Rightarrow1< x< 7\)
\(\Rightarrow x=2;3;4;5;6\)
Thay x vào 3x + 1 \(⋮\)y và 3y-1\(⋮x\)
\(x^3-3x^2-3x-1=\left(x-4\right)\left(x^2+x+1\right)+3\)
\(\Rightarrow x^3-3x^2-3x-1\) chia hết \(x^2+x+1\) khi \(3⋮x^2+x+1\)
\(\Rightarrow x^2+x+1=Ư\left(3\right)\) (1)
Mà x nguyên dương \(\Rightarrow x^2+x+1\ge1^2+1+1=3\) (2)
(1);(2) \(\Rightarrow x^2+x+1=3\)
\(\Rightarrow x=1\)
a) 3x+2 chia hết cho 2x-1
=> 6x+4 chia hết cho 2x-1 (1)
mà 2x-1 luôn chia hết cho 2x-1
=>6x-3 chia hết cho 2x-1 (2)
Từ (1) và (2) suy ra 6x+4-6x+3 chia hết cho 2x-1
=>7 chia hết cho 2x-1
=>2x-1 thuộc tập hợp (-7;-1;1;7)
Xét các trường hợp (em tự xét nhé)
=>x thuộc tập hợp(-3;0;1;4)
Vậy .....
b)5x-2 chia hết cho 7x -1
=>35x- 14 chia hết cho 7x-1
=> 35x-14-35x+5 chia hết cho 7x-1
=>-9 chia hết cho 7x-1
=>7x-1 thuộc(-9;-3;-1;1;3;9)
Xét các trường hợp (Tự xét) ta đều thấy kết quả là phân số mà x thuộc Z
=>ko có giá trị của x thỏa mãn đề bài
Vậy ....
(sai đừng mắng anh nha)
Ta có: \(x^2+2x^2+15=3x^2+15\)
Thực hiện phép chia, ta được:
Suy ra để \(x^2+2x^2+15\) chia hết cho x + 3 thì - (9 - y)x + (15 - 3y) = 0
Hay - (9 - y)x = 15 - 3y
Khi đó \(x=\dfrac{15-3y}{-9+y}\) hay \(\left(15-3y\right)⋮\left(-9+y\right)\)
Hay \(\left[\left(15-3y\right)-3\left(-9+y\right)\right]⋮\left(-9+y\right)\)
Hay \(42⋮\left(-9+y\right)\)
Khi đó (-9 + y) ϵ Ư(42) = {1; -1; 2; -2; 3; -3; 6; -6; 7; -7; 14; -14; 21; -21; 42; -42}
Xét bảng
-9 + y | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 | 7 | -7 | 14 | -14 | 21 | -21 | 42 | -42 |
y | 10 | 8 | 11 | 7 | 12 | 6 | 15 | 3 | 16 | 2 | 23 | -5 | 30 | -12 | 51 | -33 |
\(x=\dfrac{15-3y}{-9+y}\) | -15 | 9 | -9 | 3 | -7 | 1 | -5 | -1 |
-33/7 (loại) |
-9/7 (loại) | -27/7 (loại) | -15/7 (loại) | -25/7 (loại) | -17/7 (loại) | -23/7 (loại) | -19/7 (loại) |
Vậy để \(x^2+2x^2+15\) chia hết cho x + 3 thì x ϵ {-15; 9; -9; 3; -7; 1; -5; -1}
3x-3-5 chia het cho x-1
=>3(x-1)-5 chia het cho x-1
=>x-1 thuoc uoc cua 5
=>x thuộc -4;0;2;6
tick nha!
Ta có : 3x-8 chia hết x-1
=>(3x-3)-5 chia hết cho x-1
=>3(x-1)-5 ______________
Vì 3(x-1) chia hết cho (x-1) => 3(x-1)-5 chia hết cho x-1 <=> 5 chia hết cho x-1
=> x-1 \(\inƯ\left(5\right)\)
=>x-1\(\in\left\{-1;1;-5;5\right\}\)
=>x\(\in\left\{0;2;-4;6\right\}\)
Kết luận