Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:+) \(\frac{12}{16}=\frac{-x}{4}\) <=> 12.4 = 16.(-x)
<=> 48 = -16x
<=> x = 48 : (-16) = -3
+) \(\frac{12}{16}=\frac{21}{y}\) <=> 12y = 21.16
<=> 12y = 336
<=> y = 336 : 12 = 28
+) \(\frac{12}{16}=\frac{z}{-80}\) <=> 12. (-80) = 16z
<=> -960 = 16z
<=> z = -960 : 16 = -60
b) Ta có: \(\frac{x+3}{7+y}=\frac{3}{7}\) <=> (x + 3).7 = 3(7 + y)
<=> 7x + 21 = 21 + 3y
<=> 7x = 3y
<=> \(\frac{x}{3}=\frac{y}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
=> \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{7}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.3=6\\y=2.7=14\end{cases}}\)
Vậy ...
\(a)x+30\%x=-1,31\)
\(\Leftrightarrow x+\frac{3x}{10}=-1,31\)
\(\Leftrightarrow10x+3x=-13,1\)
\(\Leftrightarrow13x=-13,1\Leftrightarrow x=-\frac{131}{130}\)
\(b)\left(x-\frac{1}{2}\right):\frac{1}{3}+\frac{5}{7}=9\frac{5}{7}\)
\(\Leftrightarrow\frac{2x-1}{2}.3+\frac{5}{7}=\frac{68}{7}\)
\(\Leftrightarrow\frac{6x-3}{2}=\frac{63}{7}\)
\(\Leftrightarrow\frac{6x-3}{2}=9\)
\(\Leftrightarrow6x-3=18\)
\(\Leftrightarrow x=\frac{7}{2}\)
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne=\)
Nên x + 1 = 0 => x = -1
b) \(\frac{x+1}{14}+\frac{x+2}{13}=\frac{x+3}{12}+\frac{x+4}{11}\)
\(\Leftrightarrow\frac{x+1}{14}+1+\frac{x+2}{13}+1=\frac{x+3}{12}+1+\frac{x+4}{11}+1\)
\(\Leftrightarrow\frac{x+15}{14}+\frac{x+15}{13}=\frac{x+15}{12}+\frac{x+15}{11}\)
\(\Leftrightarrow\frac{x+15}{14}+\frac{x+15}{13}-\frac{x+15}{12}-\frac{x+15}{11}=0\)
\(\Leftrightarrow\left(x+15\right)\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)=0\)
Vì \(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\ne0\)
Nên x +15 = 0 => x = -15
a,\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)=\left(x+1\right).\left(\frac{1}{13}+\frac{1}{14}\right)\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)-\left(x+1\right).\left(\frac{1}{13}+\frac{1}{14}\right)=0\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}>\frac{1}{13};\frac{1}{11}>\frac{1}{14}\Rightarrow\frac{1}{10}+\frac{1}{11}>\frac{1}{13}+\frac{1}{14}\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}>\frac{1}{13}+\frac{1}{14}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}>0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
b, Bạn cộng thêm 1 vào \(\frac{x+1}{14};\frac{x+1}{13};\frac{x+1}{12};\frac{x+1}{11}\)Mội bên phân số 1 đơn vị rồi áp dụng như bài 1
\(a/\frac{7}{9}-\frac{x}{3}=\frac{1}{9}\)
\(\Rightarrow\frac{x}{3}=\frac{7}{9}-\frac{1}{9}\)
\(\Rightarrow\frac{x}{3}=\frac{2}{3}\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
\(b/\frac{1}{x}-\frac{-2}{15}=\frac{7}{15}\)
\(\Rightarrow\frac{1}{x}=\frac{7}{15}+\frac{-2}{15}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{3}\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
\(c/\frac{-11}{14}-\frac{-4}{x}=\frac{-3}{14}\)
\(\Rightarrow\frac{-4}{x}=\frac{-11}{14}-\frac{-3}{14}\)
\(\Rightarrow\frac{-4}{x}=\frac{-4}{7}\)
\(\Rightarrow x=7\)
Vậy \(x=7\)
\(d/\frac{x}{21}-\frac{2}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{x}{21}=\frac{5}{21}+\frac{2}{3}\)
\(\Rightarrow\frac{x}{21}=\frac{19}{21}\)
\(\Rightarrow x=19\)
Vậy \(x=19\)
#Mạt Mạt#
a) \(\frac{x}{7}+\frac{1}{14}=-\frac{1}{y}\)
\(\Rightarrow\frac{2x}{14}+\frac{1}{14}=\frac{-1}{y}\)
\(\Rightarrow\frac{2x+1}{14}=\frac{-1}{y}\)
\(\Rightarrow\left(2x+1\right).y=\left(-1\right).14=\left(-14\right)\)
Ta có bảng sau :
2x + 1 | 1 | -1 | 14 | -14 | 2 | -2 | 7 | -7 |
2x | 0 | -2 | 13 | -15 | 1 | -3 | 6 | -8 |
x | 0 | -1 | \(\frac{13}{2}\) | \(\frac{-15}{2}\) | \(\frac{1}{2}\) | \(\frac{-3}{2}\) | 3 | -4 |
y | -14 | 14 | -1 | 1 | -7 | 7 | -2 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;14\right),\left(3;-2\right),\left(0;-14\right),\left(-4;2\right)\right\}\)
b) \(\frac{x}{9}+-\frac{1}{6}=-\frac{1}{y}\)
\(\Rightarrow\frac{2x}{18}+\frac{-3}{18}=\frac{-1}{y}\)
\(\Rightarrow\frac{2x-3}{18}=\frac{-1}{y}\)
\(\Rightarrow\left(2x-3\right).y=\left(-1\right).18=\left(-18\right)\)
Ta có bảng :
2x - 3 | 1 | -1 | 18 | -18 | 3 | -3 | 6 | -6 | 9 | -9 | -2 | 2 | ||||
2x | 4 | 2 | 21 | -15 | 6 | 0 | 9 | -3 | 12 | -6 | 1 | 5 | ||||
x | 2 | 1 | \(\frac{21}{2}\) | \(\frac{-15}{2}\) | 3 | 0 | \(\frac{9}{2}\) | \(\frac{-3}{2}\) | 6 | -3 | \(\frac{1}{2}\) | \(\frac{5}{2}\) | ||||
y | -18 | 18 | -1 | 1 | -6 | 6 | -3 | 3 | -2 | 2 | 9 | -9 |
Vậy \(\left(x;y\right)\in\left\{\left(2;-18\right),\left(1;18\right),\left(3;-6\right),\left(0;6\right),\left(6;-2\right),\left(-3,2\right)\right\}\)