K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2021

b: -7<x<7

2 tháng 3 2022

a, \(\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)

x-21-13-3
x315-1

b, \(3\left(x-2\right)+13⋮x-2\Rightarrow x-2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

x-21-113-13
x3115-11

 

c, \(x\left(x+7\right)+2⋮x+7\Rightarrow x+7\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x+71-12-2
x-6-8-5-9

 

11 tháng 12 2021

TH1: \(x^2+3=0\) (vô lý)

TH2: \(x-15=0\Leftrightarrow x=15\)

 

11 tháng 12 2021

\(TH1:x^2+3=0\)

\(Do\) \(x^2\ge0\Rightarrow x^2+3\ge3\Rightarrow\) (\(vô\) \(lý\))

\(\Rightarrow x-15=0\\ \Rightarrow x=15\)

2 tháng 10 2019

x − 4 x 2 − 25 = 0 = > x − 4 = 0 x 2 − 25 = 0 = > x = 4 x 2 = 25 = > x = 4 x = ± 5

20 tháng 3 2020

a) (x2-1)(x2-4)<0

=> x2-1 và x2-4 trái dấu nhau

Ta thấy: x2 >=0 với mọi x => x2-1 > x2-4 

=> \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}\Leftrightarrow}\hept{\begin{cases}x>\pm1\\x< \pm2\end{cases}}}\)

=> Không có giá trị củ x thỏa mãn đề bài

28 tháng 11 2023

(x² + 7)(x² - 7) < 0

⇒ x² - 7 < 0

⇒ x² < 7

⇒ -√7 < x < √7

Mà x ∈ Z

⇒ x ∈ {-2; -1; 0; 1; 2}

15 tháng 11 2023

\(x^2=0\)

\(\Rightarrow x^2=0^2\)

\(\Rightarrow x=0\)

-----------

\(x^2=16\)

\(\Rightarrow x^2=\left(\pm4\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x^2=\left(-4\right)^2\\x^2=4^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)

15 tháng 11 2023

\(x^2=0\)

\(\Rightarrow x=0\left(tm\right)\)

Vậy: \(x=0.\)

\(---\)

\(x^2=16\)

\(\Rightarrow x^2=\left(\pm4\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=-4\left(tm\right)\end{matrix}\right.\)

Vậy: \(x\in\left\{4;-4\right\}.\)

\(\Leftrightarrow x\left(x-1\right)+7⋮x-1\)

\(\Leftrightarrow x-1\in\left\{1;-1;7;-7\right\}\)

hay \(x\in\left\{2;0;8;-6\right\}\)

6 tháng 8 2020

nếu x.2 mà để như vậy thì ko hợp lý thì 2 luôn đứng trước x nếu ghi sát nên chắc đề là x^2

\(\left(x^2-5\right)\left(x^2-25\right)\)

để\(\left(x^2-5\right)\left(x^2-25\right)\)là số nguyên âm 

\(\Rightarrow\left(x^2-5\right)\left(x^2-25\right)< 0\)

=> x^2-5 và x^2-25 khác dấu

\(th1\orbr{\begin{cases}x^2-5>0\\x^2-25< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2>5\\x^2< 25\end{cases}}}\Leftrightarrow5< x^2< 25\left(tm\right)\)

\(th2\orbr{\begin{cases}x^2-5< 0\\x^2-25>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2< 5\\x^2>25\end{cases}}}\Leftrightarrow25< x^2< 5\left(vl\right)\)

theo đề x là số nguyên => x^2 là số chính phương thỏa mãn \(5< x^2< 25\)

\(\Rightarrow x^2=9;x^2=16\)

\(\hept{\begin{cases}x^2=9\Leftrightarrow x=\pm3\\x^2=16\Leftrightarrow x=\pm4\end{cases}}\)

vậy với \(x=\pm3;x=\pm4\)thì \(\left(x^2-5\right)\left(x^2-25\right)\)là số nguyên âm