K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2020

\(\left|x-2\right|+\left(x^2-2x\right)^{2014}=0\)

Ta có \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left(x^2-2x\right)^{2014}\ge0\end{cases}\forall x}\)

\(\Rightarrow\left|x-2\right|+\left(x^2-2x\right)^{2014}\ge0\forall x\)

Do đó để \(\left|x-2\right|+\left(x^2-2x\right)^{2014}=0\) \(\Leftrightarrow\hept{\begin{cases}\left|x+2\right|=0\\\left(x^2-2x\right)^{2014}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2=0\\x^2-2x=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\2^2-2.2=0\end{cases}}\)

\(\Leftrightarrow x=2\)

Vậy x = 2

@@ Học tốt

Chiyuki Fujito