Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x-2 là ước của 3x+5
\(\Rightarrow3x+5⋮x-2\)
\(\Rightarrow3x-6+11⋮x-2\)
\(\Rightarrow3\left(x-2\right)+11⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{1;3;-9;14\right\}\)
Ta có : \(3x+2⋮2x-1\)
\(\Rightarrow2\left(3x+2\right)⋮2x-1\)
\(\Rightarrow6x+4⋮2x-1\)
\(\Rightarrow6x-3+7⋮2x-1\)
\(\Rightarrow3\left(2x-1\right)+7⋮2x-1\)
\(\Rightarrow7⋮2x-1\)
\(\Rightarrow2x-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x\in\left\{0;1;-3;4\right\}\)
Sửa lại kết quả của phần đầu tiên : \(x\in\left\{1;3;-9;13\right\}\)
a) 2x+1 là Ư(3x+2)
=>3x+2 chia hết cho 2x+1
<=>2(3x+2) chia hết cho 2x+1
<=>6x+4 chia hết cho 2x+1
<=>3(2x+1)+1 chia hết cho 2x+1
<=>1 chia hết cho 2x+1
=>2x+1 là Ư(1)
=>Ư(1)={-1;1}
Có:
TH1: 2x+1=-1
<=>2x=-2
<=>x=-1(t/m)
TH2: 2x+1=1
<=>2x=0
<=>x=0(t/m)
Vậy x thuộc {-1;0}
b)xy+x+y=2
<=>x(y+1)+y+1=3
<=>(y+1)(x+1)=3
=>y+1 và x+1 thuộc Ư(3)
=>Ư(3)={-1;1;-3;3}
Ta có bảng sau:
x+1 | -1 | 1 | -3 | 3 |
y+1 | -3 | 3 | -1 | 1 |
x | -2 | 0 | -4 | 2 |
y | -4 | 2 | -2 | 0 |
NX | loại | t/m | loại | t/m |
Vậy các cặp số (x;y) thỏa mãn là (0;2) và (2;0)
3x+14=3x+3+11=3(x+1)+11
Để x+1 là ước của 3x+14 thì 11 chia hết cho x+1
=> x+1=(-11, -1, 1, 11)
=> x={-12; -2; 0; 10}
x+1 là ước của 3x+14
suy ra 3x+14 chia hết cho x+1
=>x+1.x+1.x+1+11 chia hết cho x+1
=>11 chia hết cho x+1
vậy Ư(11) chia hết cho x+1
Ư(11)=1;11
x+1=1;11
x=0;10
2x-1 là ước của 3x+2
<=>3x+2 là bội của 2x-1
=>2(3x+2) là bội của 2x-1
=>6x+4 là bội của 2x-1
=>6x-3+7 chia hết cho 2x-1
=>3(2x-1)+7 chia hết cho 2x-1
Mà 3(2x-1) chia hết cho 2x-1
=>7 chia hết cho 2x-1
=>2x-1 thuộc Ư(7)
=>2x-1 thuộc {-7;-1;1;7}
=>2x thuộc {-6;0;2;8}
=>x thuộc {-3;0;1;4}